Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.

Slides:



Advertisements
Similar presentations
Chapter 12 Simple Linear Regression
Advertisements

Chap 12-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 12 Simple Regression Statistics for Business and Economics 6.
Forecasting Using the Simple Linear Regression Model and Correlation
Analisis Varians Dwi Arah Pertemuan 22 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Korelasi Linear Pertemuan 19
LECTURE 3 Introduction to Linear Regression and Correlation Analysis
Chapter 14 Introduction to Linear Regression and Correlation Analysis
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 11 th Edition.
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 13 Introduction to Linear Regression and Correlation Analysis.
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 13-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter Topics Types of Regression Models
Linear Regression and Correlation Analysis
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Pertemua 19 Regresi Linier
Chapter 14 Introduction to Linear Regression and Correlation Analysis
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Simple Linear Regression Basic Business Statistics 10 th Edition.
Chapter 7 Forecasting with Simple Regression
1 1 Slide Simple Linear Regression Chapter 14 BA 303 – Spring 2011.
© 2001 Prentice-Hall, Inc.Chap 14-1 BA 201 Lecture 23 Correlation Analysis And Introduction to Multiple Regression (Data)Data.
Linear Regression Analysis
Introduction to Linear Regression and Correlation Analysis
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
Chapter 11 Simple Regression
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Linear Trend Lines Y t = b 0 + b 1 X t Where Y t is the dependent variable being forecasted X t is the independent variable being used to explain Y. In.
OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.
Linear Trend Lines = b 0 + b 1 X t Where is the dependent variable being forecasted X t is the independent variable being used to explain Y. In Linear.
© 2003 Prentice-Hall, Inc.Chap 13-1 Basic Business Statistics (9 th Edition) Chapter 13 Simple Linear Regression.
You want to examine the linear dependency of the annual sales of produce stores on their size in square footage. Sample data for seven stores were obtained.
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 12-1 Correlation and Regression.
Introduction to Linear Regression
Chap 12-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 12 Introduction to Linear.
Applied Quantitative Analysis and Practices LECTURE#22 By Dr. Osman Sadiq Paracha.
EQT 373 Chapter 3 Simple Linear Regression. EQT 373 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Statistical Methods Statistical Methods Descriptive Inferential
Linear Trend Lines = b 0 + b 1 X t Where is the dependent variable being forecasted X t is the independent variable being used to explain Y. In Linear.
Trend Projection Model b0b0 b1b1 YiYi
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 13-1 Introduction to Regression Analysis Regression analysis is used.
Lecture 10: Correlation and Regression Model.
ECON 338/ENVR 305 CLICKER QUESTIONS Statistics – Question Set #8 (from Chapter 10)
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 18 Introduction to Simple Linear Regression (Data)Data.
Statistics for Managers Using Microsoft® Excel 5th Edition
Lecture 10 Introduction to Linear Regression and Correlation Analysis.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 19 Measure of Variation in the Simple Linear Regression Model (Data)Data.
Conceptual Foundations © 2008 Pearson Education Australia Lecture slides for this course are based on teaching materials provided/referred by: (1) Statistics.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
Chapter 12 Simple Regression Statistika.  Analisis regresi adalah analisis hubungan linear antar 2 variabel random yang mempunyai hub linear,  Variabel.
Introduction Many problems in Engineering, Management, Health Sciences and other Sciences involve exploring the relationships between two or more variables.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 13 Simple Linear Regression
Statistics for Managers using Microsoft Excel 3rd Edition
Linear Regression and Correlation Analysis
BUSINESS MATHEMATICS & STATISTICS.
Chapter 11 Simple Regression
Chapter 13 Simple Linear Regression
Simple Linear Regression
PENGOLAHAN DAN PENYAJIAN
Pemeriksaan Sisa dan Data Berpengaruh Pertemuan 17
Chapter 13 Simple Linear Regression
Presentation transcript:

Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008

Bina Nusantara Regresi Linier Sederhana Simple Linear Regression

Bina Nusantara Materi Types of Regression Models Determining the Simple Linear Regression Equation Measures of Variation Assumptions of Regression and Correlation Residual Analysis Measuring Autocorrelation Inferences about the Slope

Bina Nusantara Chapter Topics Correlation - Measuring the Strength of the Association Estimation of Mean Values and Prediction of Individual Values Pitfalls in Regression and Ethical Issues (continued)

Bina Nusantara Purpose of Regression Analysis Regression Analysis is Used Primarily to Model Causality and Provide Prediction – Predict the values of a dependent (response) variable based on values of at least one independent (explanatory) variable – Explain the effect of the independent variables on the dependent variable

Bina Nusantara Types of Regression Models Positive Linear Relationship Negative Linear Relationship Relationship NOT Linear No Relationship

Bina Nusantara Simple Linear Regression Model Relationship between Variables is Described by a Linear Function The Change of One Variable Causes the Other Variable to Change A Dependency of One Variable on the Other

Bina Nusantara Population Regression Line (Conditional Mean) Simple Linear Regression Model average value (conditional mean) Population regression line is a straight line that describes the dependence of the average value (conditional mean) of one variable on the other Population Y Intercept Population Slope Coefficient Random Error Dependent (Response) Variable Independent (Explanatory) Variable (continued)

Bina Nusantara Simple Linear Regression Model (continued) = Random Error Y X (Observed Value of Y) = Observed Value of Y (Conditional Mean)

Bina Nusantara estimate Sample regression line provides an estimate of the population regression line as well as a predicted value of Y Linear Regression Equation Sample Y Intercept Sample Slope Coefficient Residual Simple Regression Equation (Fitted Regression Line, Predicted Value)

Bina Nusantara Linear Regression Equation and are obtained by finding the values of and that minimize the sum of the squared residuals estimate provides an estimate of (continued)

Bina Nusantara Linear Regression Equation (continued) Y X Observed Value

Bina Nusantara Interpretation of the Slope and Intercept is the average value of Y when the value of X is zero measures the change in the average value of Y as a result of a one-unit change in X

Bina Nusantara Interpretation of the Slope and Intercept estimated is the estimated average value of Y when the value of X is zero estimated is the estimated change in the average value of Y as a result of a one-unit change in X (continued)

Bina Nusantara Simple Linear Regression: Example You wish to examine the linear dependency of the annual sales of produce stores on their sizes in square footage. Sample data for 7 stores were obtained. Find the equation of the straight line that fits the data best. Annual Store Square Sales Feet($1000) 1 1,726 3, ,542 3, ,816 6, ,555 9, ,292 3, ,208 5, ,313 3,760

Bina Nusantara Scatter Diagram: Example Excel Output

Bina Nusantara Simple Linear Regression Equation: Example From Excel Printout:

Bina Nusantara Graph of the Simple Linear Regression Equation: Example Y i = X i 

Bina Nusantara Interpretation of Results: Example The slope of means that for each increase of one unit in X, we predict the average of Y to increase by an estimated units. The equation estimates that for each increase of 1 square foot in the size of the store, the expected annual sales are predicted to increase by $1487.

Bina Nusantara Chapter Summary Introduced Types of Regression Models Discussed Determining the Simple Linear Regression Equation Described Measures of Variation Addressed Assumptions of Regression and Correlation Discussed Residual Analysis Addressed Measuring Autocorrelation

Bina Nusantara Chapter Summary Described Inference about the Slope Discussed Correlation - Measuring the Strength of the Association Addressed Estimation of Mean Values and Prediction of Individual Values Discussed Pitfalls in Regression and Ethical Issues (continued)