MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )  10 -14  10 -13 SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.

Slides:



Advertisements
Similar presentations
1 A.Baldini 23 sett CSN I Lecce Stato dellesperimento MEG Stato dellesperimento (LXe, T.C., Trigger a parte) Schedule Budget MoU Richieste finanziarie.
Advertisements

Status of the MEG Experiment W. Ootani ICEPP, University of Tokyo for the MEG collaboration.
LEPTON-FLAVOUR VIOLATION AND NEUTRINO OSCILLATIONS
A. Baldini PSI July 04 General Introduction Work done in the past 4 months presented in the individual sub-detectors talks: highlights Construction is.
INFN of Genova, Pavia and Roma Flavio Gatti, PSI, February 9 th, Timing Counter status Timing Counter status.
Shuei YAMADA, ICEPP, University of tau04 Nara, Sep. 15, Search for the Lepton Flavor Violating Decay  e  in the MEG Experiment Shuei YAMADA.
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
A. Baldini PSI 18 July 2007 MEG Overview Cobra (W. Ootani) LXe calorimeter (S. Mihara) Calibrations (G. Signorelli) Drift Chambers (J. Egger) Timing counter.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Lecce - 23 Sep The Trigger System of the MEG Experiment Marco Grassi INFN - Pisa On behalf of D. Nicolò F. Morsani S. Galeotti M. Grassi.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
May 9, 2002 TRIUMF Canada1 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Motivation.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
14 February 2007Fabrizio Cei1 INFN and University of Pisa PSI Review Meeting PSI, 14 February 2007 Status of MEG Software.
M. Grassi – INFN Pisa La Thuile - March 15 th, A sensitive search fordecay: the MEG experiment Marco Grassi INFN, Pisa on behalf of the MEG Collaboration.
March 2002, JINR Dubna1 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Status of the MEG Experiment  → e  On behalf of the MEG collaboration Stefan Ritt Paul Scherrer Institute, Switzerland.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
March 6, INST02, Novosibirsk1 Electronics for the  e  experiment at PSI Short introduction Trigger electronics DAQ electronics Slow Control For the.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
06 February 2007Fabrizio Cei1 INFN and University of Pisa INFN Scientific Commission I Rome, 06 February 2007 Status of MEG Software.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
PSI - 11 Feb The Trigger System of the MEG Experiment Marco Grassi INFN - Pisa On behalf of D. Nicolò F. Morsani S. Galeotti.
The MEG Experiment T. Mori for the MEG Collaboration.
Current status of MEG Experiment Yasuko HISAMATSU ICEPP, The Univ. of Tokyo ICEPP Symposium.
First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex: v1 18 Aug 2009.
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
Particle Physics Experiments at PSI Stefan Ritt Paul Scherrer Institute, Switzerland.
Pisa - Apr. 28th, The Trigger System Marco Grassi INFN - Pisa.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
A. Baldini PSI July 05 Overview of the experiment MEG is being built (Beam line, Magnet, LXe, DC, TC, Elect., Software) Delays in some items: O(months)
THE WaveDAQ SYSTEM FOR THE MEG II UPGRADE … read out by MIDAS Stefan Ritt, Paul Scherrer Institute, Switzerland 15 July 2015MIDAS Workshop, TRIUMF Paul.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
A. Calcaterra, R. de Sangro, G. Felici, G. Finocchiaro, P. Patteri, M. Piccolo INFN LNF XIII SuperB General Meeting DCH-I parallel session Elba, 30 May.
g beam test of the Liquid Xe calorimeter for the MEG experiment
MEG  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
The MEG Experiment at PSI: a sensitive search for m eg decay
An Active TARget for MEG-II, a status report
The WaveDAQ System for the MEG II Upgrade
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Stefan Ritt Paul Scherrer Institute, Switzerland
Status of the experiment in Italy
Liquid Xenon Scintillation Detector for the MEG Experiment
The MEG Detector to Search for m -> eg Decays
The Trigger System Marco Grassi INFN - Pisa
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R. Barbieri et al., Phys. Lett. B338(1994) 212 R. Barbieri et al., Nucl. Phys. B445(1995) 215 LFV induced by slepton mixing Our goal Experimental limit combined LEP results favour tan  >10 in the Standard Model !!

MEG 2 Experimental method Easy signal selection with  + at rest e +  +  Ee = E  = 52.8 MeV  e  = 180° Detector outline Stopped beam of  /sec in a 150  m target Liquid Xenon calorimeter for  detection (scintillation) - fast: 4 / 22 / 45 ns - high LY: ~ 0.8 * NaI - short X 0 : 2.77 cm Solenoid spectrometer & drift chambers for e + momentum Scintillation counters for e + timing

MEG 3 INFN & Pisa University A. Baldini, C. Bemporad, F.Cei, M.Grassi, F. Morsani, D. Nicolo’, A. Papa, R. Pazzi, F. Raffaelli, F. Sergiampietri, G. Signorelli ICEPP, University of Tokyo Y. Hisamatsu, T. Iwamoto, T. Mashimo, S. Mihara, T. Mori, H. Natori, H. Nishiguchi, W. Ootani, K. Ozone, R. Sawada, Y. Uchiyama, S. Yamada, S. Yamashita KEK, Tsukuba T. Haruyama, A. Maki, Y. Makida, A. Yamamoto, K. Yoshimura Waseda University T. Doke, J. Kikuchi, H. Okada, S. Suzuki, K. Terasawa, M. Yamaguchi Budker Institute, Novosibirsk L.M. Barkov, A.A. Grebenuk, D.G. Grigoriev, B, Khazin, N.M. Ryskulov PSI, Villigen J. Egger, P. Kettle, M. Hildebrandt, S. Ritt, M. Schneebeli INFN & Pavia University A.de Bari, P. Cattaneo, G. Cecchet, G. Nardo’, M. Rossella INFN & Genova University S. Dussoni, F. Gatti, P. Ottonello, D. Pergolesi, R. Valle INFN Roma I D. Zanello INFN & Lecce University S. Spagnolo, C. Chiri, P. Creti, C. Gatto,G. Marsella, G. Palama’, M. Panareo, G. Tassielli The MEG collaboration

MEG 4 Detector Construction Switzerland Drift Chambers Beam Line DAQ Japan LXe Calorimeter, Spectrometer’s magnet Russia LXe Tests Purification Italy e+ counter (Pv+Ge) Trigger (Pisa) LXe Calorimeter(Pisa) Splitters (Lecce)

MEG 5 COnstant Bending RAdius (COBRA) spectrometer Gradient field Uniform field Constant bending radius independent of emission angles High p T positrons quickly swept out Gradient field Uniform field B c = 1.26T current = 359A Five coils with three different diameters Compensation coils to suppress the stray field around the LXe detector High-strength aluminum stabilized superconductor  thin magnet (1.46 cm Aluminum, 0.2 X 0 ) Ready: at PSI !!

MEG 6 Positron Tracker (PSI) 17 chamber sectors aligned radially with 10°intervals Two staggered arrays of drift cells Chamber gas: He-C 2 H 6 mixture Vernier pattern to measure z-position made of 15  m kapton foils  (X,Y) ~200  m (drift time)  (Z) ~ 300  m (charge division vernier strips) goals OK To be proved in mag.field

MEG 7 Positron Timing Counter (Pavia + Genova + Roma ) One (outer) layer of scintillator read by PMTs : timing One inner layer of scintillating fibers read by APDs: trigger (the long. Position is needed for a fast estimate of the positron direction) Goal  time ~ 40 psec (100 ps FWHM) reached in tests BC404 5 x 5 mm 2

MEG l of Liquid Xe ~800 PMT immersed in LXe Only scintillation light High luminosity Unsegmented volume Liquid Xe calorimeter (Pisa + Tokyo + KEK) FWHM = 4.8 ± 0.3% 55 MeV  R<1.5cm 40 MeV  and 1 mm collimator Measured position and energy resolutions with a 100 liters prototype Cryostat in construction 150 ps FWHM timing resolution proved

MEG 9 Trigger Electronics (Pisa)  Beam rate10 8 s -1  Fast LXe energy sum > 45MeV2  10 3 s -1 g interaction point (PMT of max charge) e + hit point in timing counter  time correlation  – e s -1  angular correlation  – e + 20 s -1 Uses easily quantities:  energy Positron-  coincidence in time and direction Built on a FADC-FPGA architecture More complex algorithms implementable 1 board 2 VME 6U 1 VME 9U Type2 LXe inner face (312 PMT) boards 20 x 48 Type Type2 2 boards boards 10 x 48 Type LXe lateral faces (488 PMT: 4 to 1 fan-in) Type2 1 board boards 12 x 48 Type Timing counters (160 PMT) Type2 2 boards 2 x 48 4 x 48 2 x 48 Prototype board tested at PSI

MEG 10 Readout electronics (PSI): Domino Ring Sampler (DRS chip) Analog Waveform digitizing for all channels Custom domino sampling chip designed at PSI 2.5 GHz sampling 40 ps timing resolution Sampling depth 1024 bins Readout similar to trigger Spike structure will be simply fixed by re-programming FPGA on the board. 2.5 GHz Set of 1024 capacitors 40 MHz 11 bit Prototype tested with 55 MeV photons in the 100 l prototype raw After calibrations

MEG 11 Sensitivity Summary Cuts at 1,4  FWHM Detector parameters Signal  4  Single Event Sensitivity  2   3  Backgrounds Upper Limit at 90% CL BR (  e  )  1 

MEG Sensitivity and time schedule Total measurement time: 2 years (50% duty cycle of PSI beam) One  e  event observed if BR = 4 x If no event observed  upper BR limit at 90% CL = Discovery: 4 events (P = 2  ) correspond to BR = 2  Final prototypes being tested Full scale Drift Chamber Time profile More details at PlanningR & D Assembly Data Taking now LoIProposal Reviseddocument <LHC