Área de Instrumentación NAHUAL Mechanical Concept Current Status F. Javier Fuentes Instituto de Astrofísica de Canarias September 02 2008.

Slides:



Advertisements
Similar presentations
The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme,
Advertisements

University College London, Optical Science Laboratory bHROS Progress bench-mounted High Resolution Optical Spectrograph bHROS bHROS Progress General.
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
MMIRS 1 MMIRS MMT and Magellan Infrared Spectrograph Brian McLeod.
Test readiness review ESA ’s prototype BLANC P-E LAMLyon October 2003 Mechanical test plan.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Zian Zhu Superconducting Solenoid Magnet BESIII Workshop Zian Zhu Beijing, Oct.13,2001.
M. Ruspa - FP420 meeting, DESY 18/05/06 1 G4 simulation: where are we? Marta Ruspa on behalf of Alexander Zokhin FP420 Collaboration Meeting DESY 18 th.
Área de Instrumentación INSTITUTO DE ASTROFÍSICA DE CANARIAS J. Fuentes and D. Sosa Instituto de Astrofísica de Canarias NAHUAL THERMAL MODEL.
PACS IHDR 12/13 Nov 2003 Photoconductor Detector Modules 1 IHDR ASTEQ-GmbH Germany Peter Dinges, Michael Harr, Heribert Krüger, Hilmar Richter, Bernd Zimmermann.
Test Cryostat, OGSE and MGSE PACS IHDR: MPE 12/13 Nov 2003 AIV1 PACS Test Cryostat, OGSE and MGSE Gerd Jakob MPE.
NGAO Instrumentation Overview September 2008 Updated Sean Adkins.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
1 NGAO Instrumentation Studies Overview By Sean Adkins November 14, 2006.
Global Design Effort Detector concept # Plenary introductory talk IRENG07 Name September 17, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Millimetron mision sensitivities and instrumentation concept
19–24 June 2005Scientific detector workshop THERMAL MODELING OF THE WIDE-FIELD INFRARED CAMERA FOR THE CFHT Philippe Feautrier a, Eric Stadler a,
NGAO Instrumentation Preliminary Design Phase Planning September 2008 Sean Adkins.
1 NGAO Science Instrument Reuse Part 1: NIRC2 NGAO IWG December 12, 2006.
Improving Uncertainties of Non-Contact Thermometry Measurements Mark Finch Fluke Calibration.
Berkeley workshop summary Redundancy : dual detector Field of view : 3”x6” Spectrograph length goal: < 400 mm Isostatic mount on the base plate with control.
Eddington Kick-Off. Vienna, September 17th, 2001 T.Muñoz/C.Laviada (INTA) 1 EddiCam: The Eddington Photometric Camera Preliminary Design Layout.
HARPS... North Geneva Observatory, Switzerland Francesco Pepe et al.
1st Eddington Workshop. Córdoba, June 14th, 2001 J. Miguel Mas-Hesse 1 EddiCam: The Eddington Photometric Camera Preliminary design.
T-REX OU4 HIRES The high resolution spectrograph for E-ELT E. Oliva, T-REX meeting, Sexten Pustertal (I)1.
The Field Camera Unit Project definition, organization, planning S. Scuderi INAF – Catania.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
Presentation EddiCam consortium, FF, Madrid 13/06/2002 Eddington programmatic status Fully approved by SPC as part of ESA’s science program as project.
Pixel Support Tube Requirements and Interfaces M.Olcese PST CDR: CERN Oct. 17th 2001.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
Precise wavelength reference for Spirou F. Pepe, F. Wildi, B. Chazelas, C. Lovis, S. Udry.
The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity.
Dept. Physics & Astronomy Space Research Group Nick Nelms, John Dowson Space Research Group Dept. Physics & Astronomy University of Leicester UK GERB-4.
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
LCGT Cryogenics Status Report KEK T.Suzuki.
Herschel Space ObservatoryPACS Science Verification ReviewMPE 22/23 June 2006 GJ / MPE 1 PACS Test Facility Capabilities – Cryogenics and OGSE Gerd Jakob.
FIRST/Planck 12 December 2000PT The FIRST Mission Implementation Status and Schedule T. Passvogel The Promise of FIRST.
Andreas Quirrenbach and the CARMENES Consortium Searching for Blue Planets Orbiting Red Dwarfs.
Two fiber-fed high-resolution echelle spektro- graphs at the Calar Alto 3.5 m telescope (R=82000) to find ~ low-mass planets around ~300 late M.
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
A global approach to ELT instrument developments J.-G. Cuby for the French ELT WG.
PACS IBDR 27/28 Feb 2002 PACS PI Summary1 Where we are and where to go… A. Poglitsch MPE.
Test Readiness Review 23 October 2003 CRAL - LYON.
B-layer integration with beam-pipe and services ATLAS B-layer upgrade E. Anderssen A. Catinaccio.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
PACS IBDR MPE 27/28 Feb 2002 AIV 1 PACS IBDR Test Cryostat and OGSE Gerd Jakob MPE.
MUSE KO: MUSE Support at ESO ‘customer’  MUSE Team Created (ESO-customer), contacts with the Consortium and support activities on-going  Budget and Manpower.
The integration of 420 m detectors into the LHC
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
1 Airborne Science Program EMASHSI Kick Off Meeting Interfaces NASA Ames Research Center University of California Santa Cruz Airborne Science & Technology.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
NIRSpec - the JWST Multi-Object Spectrograph P. Ferruit (ESA), S. Arribas (CSIS), S. Birkmann (ESA), T. Böker (ESA), A. Bunker (Oxford), S. Charlot (IAP),
3 rd March 2006EUS Consortium meeting EUS Instrument Overview Eric Sawyer RAL.
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
Straw man layout for ATLAS ID for SLHC
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Incorporating Hubble Servicing with NASA’s Long-Term Vision
Athena Italian and CNES/IRAP Meeting
Status of design and production of LEP connection cryostat
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
FUNCTIONAL MODE (Commissioning)
An IFU slicer spectrometer for SNAP
Detective Quantum Efficiency Preliminary Design Review
Phase II Collimators : design status
LGS Project Meeting December 21, 2006 Agenda SWIFT update - A. Bouchez
Presentation transcript:

Área de Instrumentación NAHUAL Mechanical Concept Current Status F. Javier Fuentes Instituto de Astrofísica de Canarias September

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 2  It is the idea a part of the Nahual Consortium has about the present state and desired future development of the mechanical architecture of the instrument.  It is just a proposal for discussion. It is fully opened to all the ideas, comments, suggestions,… Nahual is a very complex instrument and it is not an easy task to put it on the best design path.  It is the input to the mechanical WBS and schedule proposals. They will be presented and discussed on session 4 this meeting. What this talk is?

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 3  Spectral Domain: 1 – 2.4 µm  Spectral Resolution >  Radial Velocity Accuracy: 1 m/s (1 hr to days/months/years)‏  Simultaneous Wavelength Calibration  No moving parts Science Requirements Main Mode

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 4  Spectral Domain: 0.9 – 2.5 µm  Spectral Resolution 500 to  Long Slit / Image Slicer  AO needed on some modes  Wavelength Tuning  Cold mechanisms needed to change between configurations  To be implemented ONLY if they are compatible with the Main Mode architecture/functionality/operation Science Requirements Optional Modes

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 5  Working Temperature < 100 K (cryogenic environment)‏  Image Stability 0.1 to 0.01 pixel According the Radial Velocity Error Budget (TBD)‏ Specified values according similar instruments  Temperature Stability in the Cold Bench < 0.01 K According the Zemax-Ansys Instrument Model (TBD)‏ Specified values according similar instruments  Time Stability 1 hr to years According the Calibration Procedure (TBD)‏  No Cold Mechanisms involved  Located in the GTC Nasmyth platform Mechanical Functional Baseline Main Mode

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 6  TNG Spectral Range: 0.9 – 2.5 µm (cryogenic)‏ Spectral Resolution > RV accuracy < 10 m/s (< 0.1 K)‏  GEMINI Spectral Range: 0.9 – 1.8 µm (not fully cryogenic)‏ Spectral Resolution > RV accuracy < 3 m/s long-term (< 1 m/s goal)‏ Similar Instruments

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 7  CFHT Spectral Range: 0.9 – 2.4 µm (cryogenic)‏ Spectral Resolution > ( goal)‏ RV accuracy < 1 m/s (< 0.01 K)‏  3.6 m Telescope Spectral Range: visible (non-cryogenic)‏ Spectral Resolution > Long-term RV accuracy < 1 m/s (< 0.01 K)‏ Similar Instruments

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 8 Optical Layout. Main Mode Echelle Cross Disperser FP1 FP2 OAP1-OAP2 OAP3 Camera Detector

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 9 Sizes of Optical Components ElementClear aperture (mm)‏ FP1~ 2 x 2 OAP1, OAP2  109 ECHELLE109 x 220 FLD1~ 10 x 10 FP2~ 2 x 2 OAP3  109 CROSS DISP  109 DETECTOR (HAWAII-2)‏36.8

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 10 Mechanical Layout. Fractal Proposal

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 11 Auxiliary Module. Fractal Proposal

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 12 Calibration Module. Fractal Proposal Integrating sphere and lamps Gas cell Cryostat window IR camera

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 13 System architecture.Present status  Mechanical architecture proposed by Fractal is partially driven by the cryogenic Auxiliary Module (Optional Mode) configuration, as well as the configuration/position of the Calibration Module  A new cryogenic layout, only shaped by the Main Mode configuration (according the science requirements), is under study  The space around the entrance window is very crowded. The configuration and position of the Calibration Module will be optimized after the Main Mode architecture is established  The feasibility of the Optional Modes will be studied after the Main Mode architecture is established

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 14 Mechanical Layout. Main Mode

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 15 Mechanical Layout. Main Mode

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 16 Cryogenics concept. Present status  The design of Nahual will be based on Giano’s highly stable cryogenics concept. Recent cold tests of Giano show an actively controlled temperature stability better than 0.01 K for short periods of time (~2 hours). Long-term stability remains to be tested.  Results from Giano, as well as the implications for Nahual, will be presented within other talk this meeting.  Same idea (to adapt the Giano’s cryogenics concept) is being considered by the Spirou’s team (at the Observatoire Midi- Pyrénées)‏

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 17 Cryogenics concept. Design status (I)‏  LN2 will be an integral part of the optical bench to guarantee a close contact between LN2 and the bench surface.  LN2 temperature will be maintained stable by controlling the pressure of the N2 boiling gas down to 1 mbar (TBC)‏  Detailed concepts of the cold shield (to attain an isothermal environment in the optical bench) and the intermediate shield (or shields), using thick aluminium plates and MLI blankets (10 to 30 layers), will be presented in this meeting.

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 18 Cryogenics concept. Design status (II)‏  A detailed steady-state thermal model, predicting a density of radiation better than 0.8 W/m 2, has been developed for this configuration.The model will be presented and commented within other talk this meeting. Proposals to avoid hot-spots will be also presented.  A vibration-free pulse-tube cooler will be used, if needed, to cool the detector and the vacuum getter (down to 10 K)‏

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 19 Cryogenics concept. Giano design

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 20 Cryogenics development  A collaborative framework is under discussion between the interested groups (presently Arcetri, IAC and UL) to share the tasks to design, manufacture, integrate and test a cryostat for Nahual. This will allow to identify the final temperature stability that can be reached with the Nahual configuration during long periods of time (as requested in the science requirements).  The private companies involved in the design and manufacturing of Giano (Studio Tomerelli and Criotec Impianti) would participate in the development of Nahual cryogenics as far as it is possible.  The schedule and detailed task sharing will be discussed during this meeting.

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 21 Support Trusses concept  The following alternatives are being studied for the trusses supporting the cold bench:  Giano’s isostatic hexapod  Same concept, but using flexures/flexural pivots at the interfaces  G-10 isostatic or hyperstatic supports. Flat plates of cylinders  Use of titanium instead of stainless steel  A detailed analysis of alternatives will be presented within other talk this meeting

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 22 Cryogenic wheel mechanisms  Wheel design could be based on proven concept from existing instruments

Área de Instrumentación F. Javier Fuentes Instituto de Astrofísica de Canarias 23 GTC Nasmyth envelope compliance