1. TECHNIQUE RESULTS Parental generation (P) Stamens Carpel 1 2 3 4 First filial gener- ation offspring (F 1 ) 5 2.

Slides:



Advertisements
Similar presentations
Mendel and the Gene Idea
Advertisements

Mendel and Genes Chapter 14
Mendel and the Gene Idea
Mendel and the Gene Idea
Mendelian Genetics Figure 11.1
Figure LE 14-2 Removed stamens from purple flower Transferred sperm- bearing pollen from stamens of white flower to egg- bearing carpel of purple.
Mendelian Genetics. What Came Before? Blending Inheritance Inheritance of Acquired Characteristics.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 14 Overview: Drawing from the Deck of Genes What genetic principles account.
NonMendelian Genetics Heredity Part 2. Degrees of Dominance Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are.
Genetic Testing and Counseling Genetic counselors can provide information to prospective parents concerned about a family history for a specific disease.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
4 Chapter 14~ Mendel & The Gene Idea The Origins of Genetics 4 Heredity: the passing of traits from parents to offspring 4 Gregor Mendel did experiments.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 14 Mendel and the gene idea.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 14 Mendelian Genetics. I. Mendel’s Approach Advantages of pea plants for genetic study: – There are many varieties with distinct heritable features,
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture 18 GENETICS. Outline Recombination – crossing over Basic Genetic concepts Genetic terms (Genotype, Phenotype, F1…) Genetic Tools (Punnett Squares,
Genetics Chapter Gregor Mendel 1850’s The father of Genetics Genetic – Branch of biology that studies heredity Heredity –biological process whereby.
Mendel and the Gene Idea
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 14 Mendel and the Gene Idea What genetic principles account for the transmission.
1 Gregor Mendel 1822 – 1884 C.E.. Stamens Carpel Parental generation (P) TECHNIQUE
Chapter 14 Mendel and the Gene Idea
Mendel, Genes, and Inheritance Chapter 12. Gregor Mendel Austrian Monk with a strong background in plant breeding and mathematics Using pea plants, found.
Chapter 14 Mendelian Genetics. I. Mendel’s Approach Advantages of pea plants for genetic study: – There are many varieties with distinct heritable features,
Gregor Mendel – Father of Genetics 3 minute intro to Mendel/Genetics gZUnJdAY
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
BIO 2, Lecture 11 REPRODUCTION III: HEREDITY, MENDEL’S LAWS, AND NON-MENDELIAN INHERITANCE.
Chapter 14~ Mendel & The Gene Idea. Mendelian genetics 4 Trait –variant for a character ex: purple 4 True-breeding –all offspring same variety 4 Hybridization.
Overview: Drawing from the Deck of Genes
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig Answer the following with your partner 1. What does a “pure strain” or true-breeder” mean? Think about Mendel’s pea experiments. 2. What is.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Gregor Mendel on Vimeo.
Mendel and the Gene Idea. What genetic principles account for the passing of traits from parents to offspring? The “blending” hypothesis is the idea that.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 14 Mendel and the Gene Idea. The “ blending ” hypothesis is the idea that genetic material from the two parents blends together (like blue and.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Genetics: Part III Extending Mendel. Figure 14.8 P Generation F 1 Generation Predictions Gametes EXPERIMENT RESULTS YYRR yyrr yr YR YyRr Hypothesis of.
Mendel used the scientific approach to identify two laws of inheritance Mendel discovered the basic principles of heredity by breeding garden peas in carefully.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Gregor Mendel’s Discoveries Pre-Mendel  Blending Theory of Heredity –Hereditary material from each parent mixes in the offspring 2 problems Individuals.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Mendelian Genetics Or, what’s the story with this “Mendelian” guy?
Gregor Mendel documented a particulate mechanism of Inheritance through his experiments with garden peas Copyright © 2008 Pearson Education Inc., publishing.
Chapter 14 Mendel and the Gene Idea. Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to.
Agenda 4/6 Pedigree Review Extending Mendel Lecture Case Study Analysis Homework: 2 non-mendelian worksheets, advanced genetics video and notes Turn in:
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Chapter 14: Mendel & The Gene Idea
Mendel & the gene idea Fig. 14-1
Mendel and the Gene Idea
Mendel and the Gene Idea
Chapter 14~ Mendel & The Gene Idea
Figure
Lecture # 6 Date _________
Chapter 14 Mendel and the Gene Idea
Chapter Mendel and the Gene Idea
Objective 13 TSWBAT explain how carrier rectognition, fetal testing and newborn screening can be used in genetic screening and counseling.
Presentation transcript:

1

TECHNIQUE RESULTS Parental generation (P) Stamens Carpel First filial gener- ation offspring (F 1 ) 5 2

EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers  F 1 Generation (hybrids) All plants had purple flowers F 2 Generation 705 purple-flowered plants 224 white-flowered plants 3

4

Allele for purple flowers Homologous pair of chromosomes Locus for flower-color gene Allele for white flowers 5

P Generation Appearance: Genetic makeup: Gametes: Purple flowers White flowers PP P pp p F 1 Generation Gametes: Genetic makeup: Appearance: Purple flowers Pp P p 1/21/2 1/21/2 F 2 Generation Sperm Eggs P P PPPp p p pp 31 6

Phenotype Purple 3 Genotype 1 White Ratio 3:1 (homozygous) (heterozygous) PP Pp pp Ratio 1:2:

TECHNIQUE RESULTS Dominant phenotype, unknown genotype: PP or Pp? Predictions Recessive phenotype, known genotype: pp  If PPIf Pp or Sperm ppp p P P P p Eggs Pp pp or All offspring purple 1 / 2 offspring purple and 1 / 2 offspring white 8

EXPERIMENT RESULTS P Generation F 1 Generation Predictions Gametes Hypothesis of dependent assortment YYRRyyrr YR yr YyRr  Hypothesis of independent assortment or Predicted offspring of F 2 generation Sperm YR yr Yr YR yR Yr yR yr YR YYRR YyRr YYRr YyRR YYrr Yyrr yyRR yyRr yyrr Phenotypic ratio 3:1 Eggs Phenotypic ratio 9:3:3:1 1/21/2 1/21/2 1/21/2 1/21/2 1/41/4 yr 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 3/43/4 9 / 16 3 / 16 1 / 16 Phenotypic ratio approximately 9:3:3:

Rr  Segregation of alleles into eggs Sperm R R R R R R r r r r r r 1/21/2 1/21/2 1/21/2 1/21/2 Segregation of alleles into sperm Eggs 1/41/4 1/41/4 1/41/4 1/41/4 10

Red P Generation Gametes White CRCRCRCR CWCWCWCW CRCR CWCW F 1 Generation Pink CRCWCRCW CRCR CWCW Gametes 1/21/2 1/21/2 F 2 Generation Sperm Eggs CRCR CRCR CWCW CWCW CRCRCRCR CRCWCRCW CRCWCRCW CWCWCWCW 1/21/2 1/21/2 1/21/2 1/21/2 11

IAIA IBIB i A B none (a) The three alleles for the ABO blood groups and their associated carbohydrates Allele Carbohydrate Genotype Red blood cell appearance Phenotype (blood group) I A I A or I A i A B I B I B or I B i IAIBIAIB AB iiO (b) Blood group genotypes and phenotypes 12

BbCc Sperm Eggs BCbC Bcbc BC bC Bc bc BBCC 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 1/41/4 BbCC BBCc BbCc BbCC bbCC BbCc bbCc BBCcBbCc bbCc BBccBbcc bbcc 9: 3 : 4  13

Eggs Sperm Phenotypes: Number of dark-skin alleles: / 64 6 / / / / 64 6 / 64 1 / 64 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 1/81/8 AaBbCc  14

15

Key Male Female Affected male Affected female Mating Offspring, in birth order (first-born on left) 1st generation (grandparents) 2nd generation (parents, aunts, and uncles) 3rd generation (two sisters) Ww ww Ww ww Ww ww Ww WW or Widow’s peak No widow’s peak (a) Is a widow’s peak a dominant or recessive trait? 1st generation (grandparents) 2nd generation (parents, aunts, and uncles) 3rd generation (two sisters) Ff FF or ff FF or Ff Attached earlobe Free earlobe (b) Is an attached earlobe a dominant or recessive trait? 16

Amniotic fluid withdrawn Fetus Placenta Uterus Cervix Centrifugation Fluid Fetal cells Several hours Several weeks Several weeks (a) Amniocentesis (b) Chorionic villus sampling (CVS) Several hours Several hours Fetal cells Bio- chemical tests Karyotyping Placenta Chorionic villi Fetus Suction tube inserted through cervix 17

Degree of dominance Complete dominance of one allele Incomplete dominance of either allele Codominance Description Heterozygous phenotype same as that of homo- zygous dominant Heterozygous phenotype intermediate between the two homozygous phenotypes Heterozygotes: Both phenotypes expressed Multiple alleles Pleiotropy In the whole population, some genes have more than two alleles One gene is able to affect multiple phenotypic characters CRCRCRCR CRCWCRCW CWCWCWCW IAIBIAIB I A, I B, i ABO blood group alleles Sickle-cell disease PP Pp Example 18

Description Relationship among genes EpistasisOne gene affects the expression of another Example Polygenic inheritance A single phenotypic character is affected by two or more genes BbCc BC bC Bc bc 9 : 3: 4 AaBbCc 19