Chapter 8: Organization of isolated deep convection a brief review the distinction between the 3 storm types is largely controlled by wind shear.

Slides:



Advertisements
Similar presentations
Thunderstorms and Tornadoes
Advertisements

Squall Lines Loosely defined: A line of either ordinary cells or supercells of finite length (10- hundreds of km) that may contain a stratiform rain region.
Lemon and Doswell (1979) Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesoscyclone structure as related to tornadogenesis.
mesovortex apex of bow echo Bow Echo: radar-observed features mid-level overhang weak echo notch bookend vortex.
Prof. Paul Sirvatka ESAS 1115 Severe and Unusual Weather Severe and Unusual Weather ESAS 1115 Severe and Unusual Weather ESAS 1115 Spotter Training and.
Thunderstorms.
Convective Dynamics Squall Lines Adapted from material from the COMET Program.
Stability and Severe Storms AOS 101 Discussion Sections 302 and 303.
Severe Weather Radar Features. Weak Echo Region (WER) Region of low radar reflectivities on inflow side of storm o Near the surface High reflectivities.
Characteristics of Isolated Convective Storms
Weismann (1992) Weisman, M. L., 1992: The role of convectively generated rear- inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos.
MesoscaleM. D. Eastin Deep Convection: Classification.
Thunderstorms. Thunderstorm Frequency See Figure in text.
Severe Convection and Mesoscale Convective Systems R. A. Houze Lecture, Summer School on Severe and Convective Weather, Nanjing, 11 July 2011.
Tornadoes, MCSs and Downbursts. Review of last lecture 1.The general size and lifetime of mesoscale convective systems, thunderstorms and tornadoes. 3.
More Thunderstorms. Today Homework in Wind shear More multicellular storms.
Severe Weather Bause/Bellore North Farmington High School Weather & Climate/Geophysical Science.
Class #9: Monday, July 19 Thunderstorms and tornadoes Chapter 14 1Class #9, Monday, July 19, 2010.
Chapter 11: lightning. this girl is charged !! Source: Halliday, Resnick, and Walker, Fundamentals of Physics.
Chapter 14. Thunderstorms  A storm containing lightening and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
Convective Weather Thunderstorms Lightning Tornadoes… …and more.
Microbursts Hazards of air mass thunderstorms. Today Mature phase Downdraft.
Types of Thunderstorms 1.Airmass or Ordinary Cell Thunderstorms 2.Supercell / Severe Thunderstorms Limited wind shear Often form along shallow boundaries.
2.6 Mesoscale Convective Systems Tropics are dominated by MCSs Consist of an amalgamation of individual clouds that form one coherent system – have convective.
AOSC 200 Lesson 18. Fig. 11-1, p. 312 Lifted Index A parcel of air will not rise unless it is unstable. The lifted index follows a parcel of air as it.
Characteristics of Isolated Convective Storms Meteorology 515/815 Spring 2006 Christopher Meherin.
AOSC 200 Lesson 17. Birth of a an Extratropical Cyclone.
Squall Lines. Supercell Thunderstorms.
Bow Echoes By Matthieu Desorcy.
THUNDERSTORMSAnd SEVERE WEATHER SEVERE WEATHER. What’s in a Name? Cyclone refers to the circulation around a low-pressure center Cyclone refers to the.
Chapter 8: Organization of isolated deep convection a brief review the distinction between the 3 storm types is largely controlled by wind shear.
Thunderstorms. Review of last lecture 1.Two types of lightning (cloud-to-cloud 80%, cloud-to- ground 20%) 2.4 steps of lightning development. 3.How fast.
Convective Storm types James LaDue FMI Severe Storms Workshop June 2005 James LaDue FMI Severe Storms Workshop June 2005.
Squall Lines Photographs © Todd LindleyTodd Lindley.
Unit 4 – Atmospheric Processes. Necessary Atmospheric Conditions 1. Water vapour must be available in the lower atmosphere to feed clouds and precipitation.
Severe Weather A SCIENTASTIC PRESENTATION. Storm Chaser’s Clip dominator.htm Discussion.
1. HAZARDS  Wind shear  Turbulence  Icing  Lightning  Hail 3.
Supercell Rotating thunderstorm with updrafts and downdrafts structured so it can maintain itself for several hours What makes a supercell different from.
1 Supercell Thunderstorms Adapted from Materials by Dr. Frank Gallagher III and Dr. Kelvin Droegemeier School of Meteorology University of Oklahoma Part.
Severe Convection and Mesoscale Convective Systems R. A. Houze Lecture, Indian Institute of Tropical Meteorology, Pune, 5 August 2010.
Types of Thunderstorms 1.Airmass or Ordinary Cell Thunderstorms 2.Supercell / Severe Thunderstorms Limited wind shear Often form along shallow boundaries.
Deep Moist Convection (DMC) Part 2 – Modes of Isolated Organization AOS 453 – Spring /3/2014.
Thunderstorm Structure and Evolution Eric A. Pani The University of Louisiana at Monroe.
Deep Convection Ordinary Cells Multicell storms Supercells.
Tropical Severe Local Storms Nicole Hartford. How do thunderstorms form?  Thunderstorms result from moist warm air that rises due to being less dense.
ORIGINAL PRESENTATION – 11 MAR 2010 NBGSA CONFERENCE – SAN DIEGO UPDATED – 5 APR THIS IS A SAMPLE PRESENTATION KINEMATIC STRUCTURE.
Chapter 10. Thunderstorms  A storm containing lightning and thunder; convective storms  Severe thunderstorms: one of large hail, wind gusts greater.
Chapter 4. Convective Dynamics 4.6 Supercell Storms
Chapter 11: severe weather!! (a)thunderstorms (classification) (b)tornadoes (c)lightning, and (d)hail.
Meteo 3: Chapter 14 Spawning severe weather Synoptically-forced storms Read Chapter 14.
Thunderstorms.
ThermodynamicsM. D. Eastin Atmospheric Vertical Structure & Thunderstorms Forecast Question: Will a severe thunderstorm develop today? Or not? Having a.
Principles of Convection. BACKGROUND When vertical shear is weak, the main influence on convective updrafts & downdrafts is bouyancy. As the vertical.
Multicells, Lines, and Mesoscale Convective Systems
Frontogenesis Frontogenesis: The generation of intensity of a front Warm air merged onto colder air Temperature gradient amplified at least one order of.
Ordinary Cells Multicell storms Supercells
Thunderstorms (Tormenta) and Tornadoes After completing this section, students will discuss the formation of violent weather patterns such as thunderstorms.
Supercells Eric A. Pani The University of Louisiana at Monroe.
Characteristics of Isolated Convective Storms Morris L. Weisman Joseph B. Klemp Presented to you by: Elizabeth Polito.
ATMS 316- Mesoscale Meteorology Packet#11 Interesting things happen at the boundaries, or.
Mesoscale Convective Systems. Definition Mesoscale convective systems (MCSs) refer to all organized convective systems larger than supercells Some classic.
Characteristics of Isolated Convective Storms
AOS 101 Severe Weather April 1/3.
Unit 5 Section 1 Thunderstorms
Thunderstorms and Severe Weather Part I
2.5 Mesoscale Convective Systems
Supercells and Tornadoes
Supercells and Tornadoes.
Presentation transcript:

Chapter 8: Organization of isolated deep convection a brief review the distinction between the 3 storm types is largely controlled by wind shear

8.1 The role of wind shear bulk Richardson number: weak shear strong shear Fig. 8.1 Fig. 8.2

8.1 The role of wind shear no shear strong shear quicktime movies:

8.1 The role of wind shear Weisman: convective storm matrix: buoyancy-shear dependencies. COMET-MetEd module blue contour:  v ’=-0.2K near surface red contour: w (10 m s -1 ) at 4 km green: q r +q s +q g > 1 g kg -1 at 1 km arrows: storm-relative flow weak shear strong shear Wilhelmson-Klemp (1982) sounding (CAPE=2200 J kg -1 ) Fig. 8.3 no shear strong shear

Brief history of thunderstorm field research ’48-’49: Thunderstorm Project (Byers & Braham) ’55: creation of the NSSL to develop weather radars and other instruments to better observe thunderstorms (Kessler) ’72-’76: NHRE (hail, hail suppression) ’78: NIMROD (microbursts) (Fujita) ’79: SESAME ’82: CCOPE ’84: JAWS ’87: PRESTORM (squall lines, MCSs) ’90: COHMEX ’95,’97: VORTEX (tornadoes) ’02: IHOP (convective initiation, low-level jet) ’04: BAMEX 07: COPS ’09-’10: VORTEX-II

The Thunderstorm Project Early field project: summer 1946 in Florida, July 1947 in Ohio Justified in part by need for wx information for the expanding aviation industry Ten military aircraft, P61C (“Black Widow”), five each mission, spaced at 5000’ intervals Used new radar developments from WW-II (first use of 5 cm C- band radars) First meso-net (people recording wx at 5 min intervals during IOPs) In-flight data obtained from photographs of instrument panels focused on determining kinematic and thermal structure and evolution of thunderstorms

The Thunderstorm Project : thunderstorm stages References: –the project report: “The Thunderstorm” –Byers and Braham, 1948: Thunderstorm structure and circulation. J. Meteorol., 5, Thunderstorm described as composed of a number of relatively independent cells Each cell evolves through stages: –“cumulus” stage –mature stage –dissipating stage

The cumulus stage: Updrafts throughout, ~ 5 m/s max (15 m/s peak); no downdrafts Cell sizes: 2-6 km Updraft increases with height but diameter remains about constant (  entrainment). LL convergence Positively buoyant throughout Graupel and rain in-cloud min in duration Wind, temperature, and hydrometeors

Surface convergence pattern measured at the time of first formation of cumulus clouds:

The mature stage: Rain first reaches the ground; heaviest rain and strongest turbulence in this stage Downdraft forms from above the FL Updrafts also remain strong, most intense higher in cell Strong surface divergence forms below the heaviest rain, and the cloud outflow forms a gust front at the surface Both positive and negative buoyancy is present (  v ’~ 2 K) Wind, temperature, and hydrometeors

Surface wind measurements show outflow below the region of radar echo echo >30 dB New convergence line ??

The dissipating stage: LL divergence Downdrafts weaken, turbulence becomes less intense, and precipitation decreases to light rain. Lasts about 30 min Wind, temperature, and hydrometeors

the Thunderstorm Project The 3 storm stages have since been interpreted as characteristic of airmass thunderstorms Byers and Braham recognize the importance of wind shear: –“strong shear prolongs the mature stage by separating the precipitating region with downdrafts from the updraft region” They also estimate entrainment: –estimated from mass balance: 100% in 2 km –estimated from soundings around storms: 100% in 5 km –discrepancy probably arose from downward motion of mixtures after entrainment, making the former estimate more reliable

8.2 Airmass Thunderstorms Scattered, small, short-lived, 3 stages Environment has little CAPE, but also little CIN, and little wind shear They are usually triggered along shallow convergence zones (BL forcing) Rarely produce extreme winds and/or hail, but may be vigorous with intense lightning

Photo by NSSL

Mature airmass thunderstorms over the Pacific seen by the Space Shuttle

height (100s of ft) Schematic of the evolution of an airmass storm, as seen by radar The reason why an airmass thunderstorms is so shortlived is that there is little wind shear, therefore the rainy downdraft quickly undercuts and chokes off the updraft. Photo by Moller

airmass thunderstorm evolution Fig. 7.7

8.3 Multicell Thunderstorms Multicell storms can occur in a cluster, or be organized as one line. Individual cells are short-lived like any air-mass thunderstorm, but the multicell cluster is long-lived, due to the ability of old cells to trigger new cells. The key to the long life of the multicell is the interaction of the gust front with the ambient LL shear gust front shelf cloud above gust front U env

Multicell storms were recognized by Byers and Braham (the Thunderstorm Project, ) Byers and Braham recognized the importance of cold pool building by decaying cells in the triggering of new cells.

Multicell Thunderstorms Shelf Cloud often indicates rising air over the gust front. New cells develop in front of the storm. Gust front maintained by the cool downdrafts. Gust front is typically several miles in front of the thunderstorm Gust front appears like a mesoscale cold front. Outflow boundary is the remnant of a gust front.

The sequence on the right shows individual cells and their place in the evolution of a multicellular system. Ludlam Fig Role of cell lifecycle in multicell storms

young cell old cell Photo by Doswell Photo by Moller Hobbs and Rangno 1985 (small multicell Cb over Cascades)

Multicell echo sequence (Leary and Houze 1983)

single-cell vs multicell storms: effect of LL shear balance between baroclinic & ambient horizontal vorticity leads to deeper ascent – more likley above the LFC (Rotunno, Klemp, Wilhelmson 1987, known as the RKW theory) shear no shear

5 km updraft (color) -1K  ’ (contour)  h, solenoidal  h, ambient 0-1 km multicell simulations

multicell simulations: cluster migration towards region with higher CAPE

8.4 Supercell Thunderstorms Fig Supercell thunderstorms are defined as having a sustained deep- tropospheric updraft ~coincident with a mid-level vorticity maximum –They are typically ‘severe’ (strong horizontal wind gusts, large hail, flash flood, and/or tornadoes) They are rare (<1% in US, <5% in Southern Plains in May), long-lived They are easily identifiable on radar –Mesocyclone (sometimes TVS) –elongated anvil (to the east), often with a V notch –a hook-shaped flanking line south side for right movers) –bounded weak-echo region (BWER) –reflectivity often suggests hail presence They form under strong shear –see right: composite hodograph –based on 413 soundings –near cyclonic supercells Fig storm motion

Supercell Thunderstorms occur most frequently in the southern Great Plains in spring. compared to single cells, supercells are: –longer-lived –larger –organized with separate up- and downdrafts.

Mesocyclone & hook echo storm motion to the ENE (70°) radar to the south 3 May 1999 Moore OK F5 tornado: reflectivity animation radial velocity animation Fig. 8.18

anvil mesocyclone photo Josh Wurman cyclonic supercell storm: visual aspects

LP photo credit: Nguyen

Photo by Bill McCaul low-precipitation supercells

LP supercell

photo credit: Nguyen HP

Fig storm motion storm-relative flow in a supercell composite hodo from ~400 soundings near supercell storms Fig young supercell mature supercell Fig. 8.23: sfc pressure perturbations (contours – mb), -1K cold pool, rain 1 km (green colors), and 1 km (pink) interpret this inflow low using Bernouilli eqn  v 2 +p’=constant

the bounded weak echo region (BWER) Fig in textbook RHI Fig. 8.22

How does the BWER form ? As the storm intensifies, the updraft becomes stronger and more erect. The result are: –the development of mid-level echo overhang (WER) – a tighter reflectivity gradient (hail is most common just north of the WER) – a shift in cloud top position (right above the WER) These are strong indicators of a dangerously severe storm.

Base scan (0.5°) RHI 16.5 km echo tops NWSE BWER on radar: range height indicator (RHI) displays (source: WSR-88D Operations Training Manual)

south to north west to east BWER using horizontal & vertical slices (e.g., in soloii) Fig. 8.19

fallspeed of hail as function of diameter D BWER & the hail cascade

Where do we go from here? covered in 2011: Section 8.4 Supercell dynamics: COMET/METEDCOMET/METED –Supercell rotation 8.4.3: origin of mid-level rotation 8.4.4: solenoidal vorticity and the mesocyclone –8.4.5: storm splitting & supercell propagation –homework #3: Weisman: convective storm matrix: buoyancy-shear dependencies. COMET-MetEd module Weisman: convective storm matrix: buoyancy-shear dependencies. COMET-MetEd module not covered in 2011: 9. Mesoscale organization: –Mesoscale Convective Systems: Squall Lines and Bow Echoes (webcast)Mesoscale Convective Systems: Squall Lines and Bow Echoes –MCSs: BAMEX Science OverviewBAMEX Science Overview –MCV dynamics (Fritsch 1996) not covered in 2011: 10. Severe weather hazards: –severe weather & storm environment –tornado dynamics –derechoes: straight line winds

Storm classification summary variables: buoyancy and shear profiles