The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,

Slides:



Advertisements
Similar presentations
The Thick Disks of Spiral Galaxies as Relics from Gas-Rich, Turbulent, Clumpy Disks at High Redshifts Frédéric Bournaud, Bruce G. Elmegreen, and Marie.
Advertisements

Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
The extremely high gas content of galaxy UGC8802 Chang Rui-xiang Hou Jin-liang Shen Shi-yin.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
In the search for CO emission in young, low- metallicity spiral disks and dwarf galaxies: Prospects for ALMA Armando Gil de Paz (UCM), Kartik Sheth (Caltech/SSC),
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Clusters & Super Clusters Large Scale Structure Chapter 22.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
The Narrow-Line Region and Ionization Cone Lei Xu.
The Milky Way Galaxy 19 April 2005 AST 2010: Chapter 24.
Rand (2000) NGC 5775 Hα map. D = 24.8 Mpc It is an interacting galaxy.
The Milky Way Galaxy James Binney Oxford University.
GALAXIES, GALAXIES, GALAXIES! A dime a dozen… just one of a 100,000,000,000! 1.Galaxy Classification Ellipticals Dwarf Ellipticals Spirals Barred Spirals.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
HI in galaxies from z = to z = 0.2 Thijs van der Hulst
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
The Milky Way and Other Galaxies Science A-36 12/4/2007.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
A101 Slide Set: Young Galaxies Grow Developed by the GALEX Team 1 Topic: Galaxies Concepts: Ultraviolet observations, galaxy formation, galaxy evolution,
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Galaxy Characteristics Surface Brightness Alternative to Luminosity I(R) = Flux/area = erg/s/cm 2 /arcsec 2 I(0) – center flux I(R) = at radius R Define.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
I N T R O D U C T I O N The mechanism of galaxy formation involves the cooling and condensation of baryons inside the gravitational potential well provided.
Σπειροειδείς γαλαξίες
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
The Milky Way Appears as a band of light stretching across the sky There are dark regions along the band, giving the appearance of a lack of stars This.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Galaxy Evolution in the Virgo Cluster Bernd Vollmer CDS, Observatoire de Strasbourg, France In collaboration with: P. Amram, C. Balkowski, R. Beck, A.
Chapter 25 Galaxies and Dark Matter Dark Matter in the Universe We use the rotation speeds of galaxies to measure their mass:
Hot gas in galaxy pairs Olga Melnyk. It is known that the dark matter is concentrated in individual haloes of galaxies and is located in the volume of.
The Dark Side of the Universe Sukanya Chakrabarti (FAU)
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Rotation curves and spiral arms in galaxies - observations and theory
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Lecture 18 Stellar populations. Stellar clusters Open clusters: contain stars loose structure Globular clusters: million stars centrally.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Milky Way thin disk. Q: in order to study the spatial distribution of the thin disk (which dominates the Milky Way luminosity) surface photometry in the.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Star Formation and H2 in Damped Lya Clouds
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Our Changing View of the Galaxy NGC 2915 Ed Elson Department of Astronomy, UCT Supervised by: Prof. R. C. Kraan-Korteweg Prof W. J. G. de Blok 3 rd Annual.
Astronomy 1143 – Spring 2014 Lecture 21: The Evidence for Dark Matter.
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
Galaxies With Active Nuclei
Galaxies With Active Nuclei
Presentation transcript:

The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan, F. Herpin, A. Ferguson....

Why care Why care about the outer disk? -- Dark Matter -- reservoir of matter for galactic evolution --Star Formation seen quite far out, new area of parameter space for cloud and star formation -- generally, outer disks a sort of "last frontier" -- Project to progress from large spirals like NGC 4414, NGC 6946, M31, Milky Way to smaller objects like M33, NGC with lower luminosity and Z but higher gas fraction

what is outer What is outer ? We know galaxies extend beyond the "R25" radius, both the disks (gas, SF) and the (stellar) spheroid. For M/L = 1, R25 corresponds to 6.6 Msun pc -2, which is very close to the typical HI surface density at R25 in normal spirals (6 x H/cm 2 = 6.6 Msun pc -2 incl. He) "outer" ==>  gas ≥  stars ? (not Leo Blitz's case) This definition may be more physical than a brightness criteria but also brings the "outer" disk further in for later types of galaxies (more gas, younger stellar population).

what was outer What was outer ? For a wide range of scenarios, the gas mass was a few times higher at redshift 1 than today. This naturally brings the "outer" disk further in by at least one scale length using the  gas ≥  stars definition. The inner disk was then about half the size of what it is today for evolution without major mergers. If the HI --> H2 --> stars process varies with the gas/star mass ratio, then the study of outer disks may in fact be relevant to mid-z work, where it looks like the Star Formation Efficiency is higher.

outer disk conditions Outer disk conditions -- some stars, low interstellar radiation field (ISRF) --  gas ≥  stars. -- subsolar metallicity In recent years better measurements of lines from HII regions have shown that electron temps rise with distance, resulting in weaker gradients. -- slowly varying gravitational potential ==> low tidal forces on clouds -- low large-scale magnetic field -- dominant source of heating not known -- HI present far far out, CO (proxy for H2) only recently

Disk DM For many spirals, disk DM fits very well (here HI scaled up by 17 (thin disk) or 18 (thick disk) -- 1 free parameter. NGC 4414 Why is the distribution of a minor mass component, the HI, so closely linked to the distribution of the most massive mass component (the Dark Matter) ? Not an isolated case: e.g. Hoekstra et al 2001

Gas in the outer disk H+ -- probably a minor component within 2R 25 (~10 18 H/cm 2 or 10 6 Msun per 10 x 10 kpc area) HI -- probably dominant and found in 2 phases warm: n ~ 0.1 H/cm 3 and T ~ 8000K and cool: n ~ H/cm 3 and T ~ K mass measurable via 21cm line H2 -- first CO detections beyond R25 in 2004 Is CO the only tracer of molecular gas? Currently only 4 galaxies with CO detected beyond R25 Milky Way, NGC 4414, NGC 6946, and M33 Focus of this talk: Star Formation and HI --> H2

N4414 Nature IRAM-30m telescope in 2003 and 2004 = First detection of molecular gas in an isolated spiral far beyond the optical edge. An R band image of NGC4414 taken with the CFHT is shown with HI contours at column densities of 4, 6, 8, 12 x10 20 atoms cm -2, the 6 x10 20 atoms cm -2 contour being dashed. The surrounding boxes show the CO (1-0) (full line) and HI (dotted line) spectra indicated by circles. The CO(2-1) line was not clearly detected but the conditions were very good. HI and CO line widths seem related CO Observations of NGC 4414

NGC 6946 CO Halpha HI

M33 - UV lonely HI on CO H  on CO (Gardan et al. 2007) Region mapped in CO "Lonely Cloud" Little HI, very little SF

13CO observations of M33 Even beyond R25 ("outer disk" cloud), the 13CO is detected with a line ratio ~10, showing that the gas is quite optically thick in 12CO. "Virial" theorem suggests NH2/Ico ~ 4 -6 x cm -2 /(Kkm/s)

H2 fraction increases with NH But decreases with radius at same NH solid lines are NH2 ~ NHI 2 NH2 ~ NHI horizontal NH2 ~ NHI 3

Braun Work by Braun (1992, 1997) on nearby galaxies has shown that (a)temp of the cool HI (low Tkin but high Ta) increases with R (b) fraction of HBN (cool phase) decreases sharply at R25, whether measured by filling factor or flux * fraction of flux in High Brightness Network, open circles are HBN surface filling factor, filled circles are observed peakTa

N6822 HI CO N6822 CO, 24 N6822 CO, HI

Digel Outer disk clouds from Digel et al 1994 CO associated with HI clouds but not always with HI maxima. Tkin of K but lower CO luminosities than inner disk clouds. Difficult to identify sources of heating (lack of IR sources) mass contribution small due to their rarity.

outergal Two channel maps at and -33 km/s with spectra at the positions indicated. Note the difference between the CO and HI line widths. The spiral arms are apparent in the two tracers. Sight lines typically meet two molecular clouds. (HI from CGPS, 1' res)

outergal HI-CO maps top: HI Tb from CGPS 1' res (50-100K) size: 50 pc bottom: CO(2-1) map with IRAM HERA. little corr. Feature to right is in IRAS 100  map.

Conclusions 1 CO detectable far out in the Milky Way, M33, NGC 4414, and probably all spirals with extended HI. Molecular fraction seems to decrease more sharply than pressure in outer disk. Metallicity apparently not a problem for CO detection, despite claims to the contrary except at low Z and high ISRF. Heating of molecular gas sufficient for detection even far out. Spitzer (IRAC, MIPS) did not detect outer disk of N4414 or M33. ==> not a lot of local heating, which would create bright spots While CO, HI, and tracers of star formation (H , FIR) are spatially correlated, their intensities are not. At small scales, the detailed association breaks down. Possibility: outer disk clouds may be smaller than inner disk ==> different formation mechanisms (lack of spiral arms, lower ambient pressure...) ? Still uncertain.

The End Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan, F. Herpin, P-A Duc,....