The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude - 17.8° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.

Slides:



Advertisements
Similar presentations
Web: Contact: HAWC is a collaborative effort between institutions in the United States of America.
Advertisements

L.S.Stark 1, M.Doro 2, H.Bartko 3, A.Biland 1, M.Gaug 2, S.Lombardi 2, M.Mariotti 2, F.Prada 4, M.Sanchez-Conde 4, F.Zandanel 2 (for the MAGIC Collaboration*)
Cut off more slowly ~ 50GeV Thompson astro-ph/ Credit: A.K. Harding (NASA/GSFC) Our first target: Crab pulsar/nebula The standard candle for gamma-ray.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
WP-Technology Working Group Future of Ground Based Gamma-ray Astronomy Feb 8, Technology & Cost WP Working Group GOALS With the Current Generation.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
Gus Sinnis HAWC Review December 2007 Milagro a TeV Gamma-Ray Observatory Gus Sinnis Los Alamos National Laboratory.
The signature of the nearby universe on the very high energy diffuse gamma sky Århus, November 2006 Troels Haugbølle Institute for.
The Transient Universe: AY 250 Spring 2007 New High Energy Telescopes Geoff Bower.
China’s Future Missions in Space High Energy Astrophysics Shuang Nan Zhang 张双南 Tsinghua University and Institute of High Energy Physics, Chinese Academy.
Surveying the Galactic Plane with VERITAS and GLAST Amanda Weinstein, UCLA Getting Involved with GLAST workshop May 22, 2007 UCLA.
Julie McEnery1 GLAST: Multiwavelength Science with a New Mission Julie Mc Enery Gamma-ray Large Area Space Telescope.
The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100.
On A Large Array Of Midsized Telescopes Stephen Fegan Vladimir Vassiliev UCLA.
Exploring the Universe with Particles and Rays: α, β, γ, X, Cosmic, … Toby Burnett Prof, UW.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
Measuring the GRH and the cosmological parameters with MAGIC Oscar Blanch IFAE, Universitat Autònoma de Barcelona ISCRA 2002 June 2002.
ICHEP 04 - August 16-22, 2004, Beijing Monica Pepe – INFN Perugia 1 Gamma-ray Large Area Space Telescope High Energy Gamma Physics with GLAST Monica Pepe.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
High-Energy Astrophysics
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Observations of 3C 279 with the MAGIC telescope M.Teshima 1, E.Prandini 2, M.Errando, D. Kranich 4, P.Majumdar 1, M.Mariotti 2 and V.Scalzotto 2 for the.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
International research project GALA: Monitoring of high energy gamma-ray astrophysical sources.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
H.E.S.S. - MAGIC – CTA meeting Performance wish list:  Factor ~ 10 sensitivity in 100 GeV …. 10 TeV  Extension to ~ TeV  Extension to low energy.
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
Introduction to gamma-ray astronomy GLAST-Large Area Telescope Introduction to GLAST Science New way of studying astrophysics Schedule of GLAST project.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
CTA Cherenkov Telescope Array CTA Josep-M.Paredes & Massimo Persic for CTA Consortium Vulcano, May 30, 2009.
Development of Ideas in Ground-based Gamma-ray Astronomy, Status of Field and Scientific Expectations from HESS, VERITAS, MAGIC and CANGAROO Trevor C.
CTA The next generation ultimate gamma ray observatory M. Teshima Max-Planck-Institute for Physics.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
Serving Data to the GLAST User Community Don Horner (L3 GSI/GSFC) and the GLAST Science Support Center Team Data Properties and Impact on Data Serving.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
A Catalog of Candidate High-redshift Blazars for GLAST
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
What does mean neighbours ? At the same epoch –simultaneous (transient phenomenae) –before (can affect the SIMBOL-X observing plan) –after (can complement.
Matteo Palermo “Estimation of the probability of observing a gamma-ray flare based on the analysis of the Fermi data” Student: Matteo Palermo.
Search for emission from Gamma Ray Bursts with the ARGO-YBJ detector Tristano Di Girolamo Universita` “Federico II” and INFN, Napoli, Italy ECRS, September.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
1st page of proposal with 2 pictures and institution list 1.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Combining Gamma and Neutrino Observations Christian Spiering, DESY.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
MAGIC Telescopes - Status and Results 2009/ Isabel Braun Institute for Particle Physics, ETH Zürich for the MAGIC collaboration CHIPP Plenary Meeting.
1 Study of Data from the GLAST Balloon Prototype Based on a Geant4 Simulator Tsunefumi Mizuno February 22, Geant4 Work Shop The GLAST Satellite.
Gamma-ray Large Area Space Telescope -France -Germany -Italy -Japan -Sweden -USA Energy Range 10 keV-300 GeV. GLAST : - An imaging gamma-ray telescope.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The Large High Altitude Air Shower Observatory LHAASO.
1 Observation of GRBs at tens of GeV with a full-coverage air shower array at m elevation Zhaoyang Feng (Speaker), Yiqing Guo, Yi Zhang, Hong.
The end of the electromagnetic spectrum
Observation of Pulsars and Plerions with MAGIC
CALET-CALによる ガンマ線観測初期解析
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Prospects for Observations of Microquasars with GLAST LAT
Calibrating Atmospheric Cherenkov Telescopes with the LAT
Presentation transcript:

The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT (mass ~ 3000 kg) GBM (mass ~ 55 kg ) LAUNCH: ~ 2007

THE NEXT GENERATION OF γ- RAY DETECTORS. Ground based and satellite experiments are to some extent complementary for our purpose. –ACT detectors (MAGIC, HESS, VERITAS, CANGAROO): limitate exposure times, an upper energy threshold, a very large effective area, a medium energy resolution, a point-like  survey. –Satellite experiments (GLAST): long exposure times, a lower energy threshold, a small effective area, a good energy resolution, a 4  survey.

MAGIC Characteristics Effective area 2,3 · 10 6 cm 2 Energy resolution (σ E /E) ~ 50% (10 GeV) ~ 20% (100 GeV) Angular resolution (σ θ ) ~ 0.05º (transverse) ~ 0.2º (longitudinal) Energy threshold ~ 30 GeV Field of view (sr) 4º Sensitivity 8 · cm –2 s –1 GLAST Characteristics Effective area 10 4 cm 2 Energy resolution (σ E /E) 9% (100 MeV on-axis) <15% ( GeV on-axis) Angular resolution (σ θ ) 3.37º (front), 4.64º (total) (100 MeV on-axis) 0.086º (front), 0.115º (total) (10 GeV on-axis) Energy threshold ~ 20 MeV Field of view (sr) 2.4 Sensitivity ( > 100 MeV) 3 · cm –2 s –1

COMPARISON among gamma telescopes

COMPLEMENTARITY between the two experiments MAGIC a very large collection area GLAST very large field of view high duty cicle wide energy range excellent energy resolution low systematic energy calibration uncertainties (the new imaging Cherenkov telescopes are being built to slew within a few tens of seconds following notification) providing the ground-based observers with alerts for transient sources capability of detecting very short flares from known sources

For individual point sources, MAGIC has unparalleled sensitivity at very high energies, with the ability to resolve shorter-duration flares. For many objects, full multiwavelenght coverage over as wide an energy range as possible will be needed to understand the acceleration and gamma-ray production mechanism. GLAST’ s observations of steady sources at the highest energies will be used to reduce the systematic errors in the sensitivities of the ground – based observatories. At energies above ~10 GeV, the spectra from distant AGNs may be cut off due to absorption by the extragalactic background light. Spectral measurements by both GLAST & MAGIC will be needed to measure these absorptive effects accurately and thus determine the spectrum of the EBL from microwave to optical wavelenghts.

GLAST, with its good energy resolution, is favoured in observing the combined effect of the continuous component and the line; BUT if M χ  is higher than GLAST’s threshold MAGIC, owing to its larger effective area, is more adeguate for this purpose. LEP + MSUGRA: M χ  > 40 GeV DETECTION PROSPECTS: Dark Matter

On the other hand: GLAST, with its wide angular acceptance, is an ideal instrument to measure eventual local enhancements in the γ- ray flux due to clumps of dark matter. The dependence on the profile which describes the dark matter distribution is in particular critical for detectors like MAGIC which have a small angular acceptance; BUT If a large fraction of the total flux emitted is concentred in a tiny region of the sky, whose coordinates are known with sufficient accuracy, an ACT can be the ideal instrument for detecting neutralino dark matter.

Pulsar POLAR CAP MODELS:  ray spectra cutoff very sharply, “superexponential” OUTER GAP MODELS:  ray spectra cutoff more slowly, as a simple exponential POLAR CAP MODELS:  ray spectra cutoff very sharply, “superexponential” GLAST: energy resolution, dynamic range MAGIC: energy threshold

DEVELOPMENTS