Going for the RED is an approach used by But for Red to indicate hydrocarbons (like this example) lots of things have to be true. The project I use for.

Slides:



Advertisements
Similar presentations
Proving ADAPS via honest results. No well data is input
Advertisements

North Sea faulting How the ADAPS inversion / integration clarifies the strike-slip structure – by David Paige This study was originally proposed September,
Introducing the piggy back noise problem. This is what we saw visually on the 3D gather data. Strong and persistent cps waves riding on very low.
This is the online version of the game of craps. It is a type of simulation game. It’s as though you’re playing on the real table. Craps is played in most.
From shale play To Gulf coast prospects There are timed topics on many slides. An “end” message will inform you when the slide is done. The show discusses:
1.The seismic energy continuum consists of thousands of independent primary reflections, each coming from a single reflecting interface. 2. There is no.
Usually the next step is to run the Cognitive Tests. Click on “Run Cognitive Tests” button to start testing. All of the tests begin with you giving a brief.
? Mapping of gulf coast strike slip faults To the left is a set of associated strike slip and adjustment faults on the Lousiana coast. The section itself.
In the next series I present this set of cutouts and try to explain that each shows a refraction event that was lifted off. To see the events on the full.

Seismic noise is omnipresent The next slide goes back to earlier work where the shear problem became apparent. It curls around our reflection events, Enhancing.
From shale play To Gulf coast prospects There are timed topics on many slides. An “end” message will inform you when the slide is done. The show discusses:
1. Tuesday: Halloween Shoot due TOMORROW. You must make a contact sheet of your photos and print it from my computer tomorrow. -5 pts for every day I don’t.
Near traces or Middle traces or Far traces The A mplitude V ersus O ffset mythology. If ever a single picture could prove a negative, this one might be.
A North Sea processing & Interpretation story. The same well image was shown on both the before and after sections above. As you may have noted, it is.
North Sea Strike Slip Fault Study – The ultimate before and after. To the left you see the best the client could do on a “well-cutting” cross line. To.
The ADAPS visual approach to interpretation When Dr. Robin Westerman talked Nexen into trying ADAPS I was presented with the display of the problem shown.
? Mapping of gulf coast strike slip faults To the left is a set of associated strike slip and adjustment faults on the Lousiana coast. The section itself.
The evolution of the down wave. We hit the earth with some sort of an impact which results in a movement. Since the earth is elastic, it rebounds past.
GG450 April 22, 2008 Seismic Processing.
A North Sea processing & Interpretation story. The same well image was shown on both the before and after sections above. As you may have noted, it is.
De-noising Vibroseis The contention is that the correlated Vibroseis field record (to the far left) is a mess of overlapping coherent noise and signal,
1 Psych 5500/6500 The t Test for a Single Group Mean (Part 5): Outliers Fall, 2008.
The danger is that you’ll never believe your old interpretations after viewing this show. In my main show I compare 32 in-lines before and after noise.
Toggle guide Before A tutorial on the effect of seismic noise. (Requires lots of toggling to really see how noise interacts with signal). I start with.
Another example of critical angle refraction noise.
Exercise set 3: Basic cross sections
There is a time for ultra seismic accuracy but that comes after we have located something exciting enough to look at. Since migration before stack almost.
thinking hats Six of Prepared by Eman A. Al Abdullah ©
Going for the RED is an approach used by older interpreters. But for red to indicate hydrocarbons (like this example), lots of things have to be true that.
Shale Lime Sand The argument for non-linear methods. 1 The geology 2. The reflection coefficients (spikes in non-linear lingo). 3. The down wave 4. Its.
So where does the ADAPS optimization method fit into this framework? The seismic trace equation does not fit the linear definition, since the values on.
Seismic is not too complex for geologists - If you can understand convolution, you have it made. Simply stated, when downward traveling waves pass by a.
Why determining an exact waveform is next to impossible. We start at the recording point with these facts – 1. The seismic continuum consists of overlapping.
Some background and a few basics - How my inversion works – and why it is better - How added resolution makes parallel fault picking a possibility – The.
Welcome to a before and after coherent noise removal series. There is a lot to explain about what is going on here, so I am using this otherwise wasted.
A list of inversion error causes that all attribute junkies should really understand: 1.Definition of inversion – A seismic trace is the product of the.
Depth point 1 A study of the effects of early critical angle crossings. From data I (Paige) had previously processed to check out my sonic log synthesis.
Processing Lab 9 Objectives: - View a timeslice - Consider binning effects on migration - Post stack Migration Sumit VermaBryce Hutchinson.
Sight words.
ADAPS optimized stack of line 401 (no inversion or integration). Please toggle with conditioned version I start with the Paige optimized stack v.s. the.
SOLIDWORKS: Lesson II – Revolutions, Fillets, & Chamfers UCF Engineering.
Processing Lab 3 – Header issues and trace editing Bryce Hutchinson Objectives: Fixing elevation issues Define an LMO function Pick first breaks Kill traces.
Test-Taking Skills and Preparation. Test-Taking Skills Skills related not to subject knowledge but attitude and how a person approaches the test. Skills.
The Commutative Property Using Tiles © Math As A Second Language All Rights Reserved next #4 Taking the Fear out of Math.
Sight Word List.
Consciousness in Human and Machine A Theory (with falsifiable predictions) Richard Loosemore.
Refraction Statics Bryce Hutchinson Sumit Verma. 3D Statics display 1. Click this button on the right side of the statics window to open a 3D statics.
Because noise removal is central to my later work, I start with a discussion on how intertwined coherent noise creates a random effect that confuses all.
ADAPS multiple removal demo. The upper halves of the slides in this series show the input gathers.The bottoms show the same data with multiples removed.
Sight Words.
Visual interpretation is still the best. You can see reservoir possibilities that have been missed, and do it at a fraction of the normal cost. The tougher.
Chess Strategies Component Skills Strategies Prototype Josh Waters, Ty Fenn, Tianyu Chen.
Multiplication of Common Fractions © Math As A Second Language All Rights Reserved next #6 Taking the Fear out of Math 1 3 ×1 3 Applying.
Welcome to a wild ride through ideas. In this show I am suggesting that the multiple fractures associated with strike slip faulting can accomplish the.
How the Saudi / shale oil battle should make us stop & think. (and I don’t mean about geo-politics). The shale production reality reminds us the Saudi.
Why inversion & integration is needed to see stratigraphy.
Can we see shale fractures? Some claim to already doing it but I have my doubts. I believe I’m close, but not there yet. I’d like opinions. The section.
Probing the question of “how good can seismic get? I ask you to spend a good amount of time just looking at the amazing detail this section shows. When.
Info Read SEGY Wavelet estimation New Project Correlate near offset far offset Display Well Tie Elog Strata Geoview Hampson-Russell References Create New.
The normal approximation for probability histograms.
Geology 5660/6660 Applied Geophysics 24 Feb 2016 © A.R. Lowry 2016 For Fri 26 Feb: Burger (§8.4) Last Time: Industry Seismic Interpretation Well.
DSMA 0399 Comments of Past Students. DSMA 0399 Student Comments “Before this class as you probably remember I would not even accept that x or y could.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 21 More About Tests and Intervals.
A history of misguided pre-stack processing.
How to Start This PowerPoint® Tutorial
Modeling of free-surface multiples - 2
From Raw Data to an Image
BEFORE AFTER Let’s start by examining this particular sonic log match. We have super-imposed it both on the input (before) and on the output (after). Some.
From shale play To Gulf coast prospects
Presentation transcript:

Going for the RED is an approach used by But for Red to indicate hydrocarbons (like this example) lots of things have to be true. The project I use for my “direct detection” example lies off south Louisiana. It shows several “emergence / subsidence cycles, with fairly obvious overlapped angular disconformities. Current automatic mapping logic can’t begin to handle the complexity, and visual interpretation is sorely needed. Later we will talk about noise, But first let’s consider what is needed to make these “hot spot” amplitudes meaningful. older interpreters who choose to ignore the attribute zealots. My argument starts with inversion. I say the industry misses the excitement of direct reservoir spotting because they stop too soon. Simulating sonic logs to enable accurate stratigraphic tracking should be the goal. More on next slide. Inside, I present “before and after” pairs that are set up for “toggling”. If you have never used this tool, it is worth a visit to use it. Toggling helps one visualize why integration flips the polarities to achieve a simulation of lithology. Multiple well log matches prove it is doing the right thing.

Sonic log from an early shale play, imposed on an ADAPS non-linear inversion (left) and on the integrated final result (right). On the log, low velocities peak to the left (red on the the display). Bed thickness is crucial to stratigraphic correlation, and correlation is the exploration geologist’s most essential tool. In reservoir work, tracking thickness is all-important. Matching sonic logs must be the ultimate goal. All inversions contain “spike guesses” from all interfaces. Unless one is able to resolve this mess in one’s mind, any inversion by itself does not provide attributes that are trustworthy. Any single interface value is dependent on both of the bounding bed velocities. In addition, a “red” from the top interface means one thing while one from the bottom means the opposite. Thus the need for integration. Of course I don’t think others can match the ADAPS non- linear inversion, but that is something else. Examination will show there is little “polarity” correlation between inversions (even mine) and the well log. One must be careful with polarities. Many observers just line up events without regard to color. Note point A where polarities are opposed (some would think this a match). While the integrated match is not perfect, it’s pretty good. Note how well the thickness agrees. As we continue with the older part of the show, be prepared to toggle. All versions of the same original data have been carefully aligned, so two fingers on two arrows is all you need to make an intelligent comparison. Spend some time on this learning experience. A

1 Direct reservoir detection - Where words fail, the well match here says it all. It proves we could have predicted the presence of this particular reservoir before the act of drilling. The project has several wells, and the matches are all quite good. No well data was used as input to our processes, but it is nice for it to illustrate my points. The stars identify what I consider a basal sand, sitting on one of several unconformities (angular disconformities that is). The ability of the system to simulate lithology was crucial in my own interpretation.

Here is well #3. It appears to be tapping below our basal sand (again identified by stars). It is interesting to note that it (the basal sand) has petered out here. This is a problem we should expect in “on-lapping” deposition. Again this is a good match, but not perfect.

AVO probably worked here, but if it did, it was pure accident. The explosion on the gather to the left, would have triggered the AVO logic. It was caused by pre-stack migration that could not handle refractions. How this causes outlandish amplitudes is beyond me, but it is not at all unusual. The refraction(s) are seen developing in the series of gathers shown at the bottom left. Over-corrections make it easy to spot them. Note that the system handles them until a critical point, where the energy explosion occurs. The good results were obtained by using a very deep mute, throwing away almost half of the traces. However that does not mean there is not still a noise problem caused by the “critical angle phenomenon. At that angle, the downward energy is interrupted, and non-reflection events pour in to fill the gap. These mostly consist of “point source” refractions from deeper beds. In my later work I have successfully lifted off this type of noise, and the odds are I could do a better job on this data. Unfortunately that opportunity is gone. Introducing toggling as an educational tool. To really grasp the exploration importance of sonic log simulation one needs to continually compare the before and after display sets. Two fingers placed on the left and right arrow keys are all that is needed, but practice helps. Three sets follow. Please make the effort. I assure you it will be worth your time.

A Unadulterated stack This is the raw stack on comparison #1. Please toggle with my optimized stack.

A Optimized stack input Toggle back w raw Or with the final. Going back and forth here is where the time should be spent, as the integration logic rearranges computed interfaces to simulate lithology. Lobes will disappear as they get combined with their mates.

Back to input (the optimized stack) A Final result Final ADAPS result If this is your first time into the concept, your reaction might be one of disbelief when you see the shifting lobes. All I need to say here is that the well matches are not lying, and there is no way I could make them up. The fact that normal seismic sections don’t represent lithology is worth knowing.

YYYY straight stack Toggle with the optimized stack. But first notice where the arrow is pointing. Straight stack

The optimized stack You should notice glimpses of the basal sand to the right of the arrow. Of course this becomes the input to the inversion/integration logic. Toggle back to the simple. Or toggle with the final Optimized stack

Amazing if true – (and we sure think it is). What we see repeated in this toggle trio is a serious case of tuning and subsequent de- tuning. The basal sand we see here (which checks out on other lines) hardly shows up before NLI. Final inverted and integrated

toggle with the optimized stack. Straight stack Another example.

The optimized stack Again notice that the basal sand is visible now, before inversion. In particular, really look at the right-hand arrow. Toggle back to the simple. Or with the answer Optimized stack

Final inverted and integrated Toggle with the optimized stack.

In-line XX6 and cross-line 2900 I close the toggling session with an intersect to show the merit of visualizing complex results. Of note here is the “bright spot” verification we get when the hydrocarbon indication fades down dip.. the fact that these two independent runs tie so well is further system proof. Associated topics - Strike slip faulting is obvious to me on all these sections, but my goal here was just to show the need to invert and integrate. This topic is covered extensively in the later show introduced below. Major coherent noise discovery. R ecent noise prediction & removal work I have done (both on gulf coast data and on coal seam work in Scotland), has convinced me that strong noise events exist even when the all seems well on the stack. Because of what we saw on the gathers earlier I am certain serious noise still exists here, intermixing with the real data. While the well matches are a lot better than has been seen before they are not perfect, and I believe coherent noise is making its way through. I contend noise removal is the next seismic frontier. I introduce my gulf coast work on the next slide as a case where de-noising uncovered previously hidden continuity that is strong and believable.

A deep well to the south of this Louisiana salt dome project indicates that the prolific shale play strata I show on this well log match extends this far south. (You might notice that final integrated match,) The pinch-out pointed to by the black arrow does not appear on the input. There’s no way my system could have invented that. On the next slide we start back at the shot point format on our explanation.. Making a long story as short as I can, this de- noising goes back to the 3D shot point, iteratively detects refraction events then gently lifts them off the underlying signal. It then produces the treated gathers, applies my own NMO and stacks. It was not told this was a salt dome, but it took it upon itself to sharply delineate the boundaries. This is what you see at the right. The green delimiter is mine. In general, the logic eliminated the noise you will later see crossing this line, and brought in completely new continuity outside the dome. You will see an example on the next slide. Then, on the final I show the same kind of noise removal on Vibroseis data from coal seam work in Scotland. A revolutionary breakthrough? I think so. From the original show

Here is another before and after – To begin, the green delineation line is in the same place on both. I just cut off the rest of the salt to save space. So let me just cover several points of interest. 1. Unfortunately the strong apparent dips at the edge of the dome were the geologists target. The system threw them out to his intense displeasure. 2. Careful study shows the dips and the events are not the same. This introduces the problem of close overlap of noise and signal, probably the primary challenge to the logic. 3. Point 2 applies here in spades (meaning extremely). Here we see the noise continuing into no-mans land. 4. Both points strongly apply here.To the left of the demarcation, where there is virtually nothing showing on the input, our results are strong. To the right we see nothing, meaning the input was pure noise. Now, reasonable people should see we are dealing with a major discovery here – one that opens new exploration possibilities. (at least that is how it seems to me.) Click on oval to access the original show – (or put adaps.com/PP1.ppsx in your browser) Now on to the Scottish Vibroseis example.

De-noising Vibroseis The contention is that the correlated Vibroseis field record (to the far left) is a mess of overlapping coherent noise and signal, the noise being strong enough to control the stack. The operative target is below the red line. The goal is delineation of a series of coal beds. On first glance, one would think there is a serious statics problem, but once the non-linear process lifts off most of the noise (to the right), we see that statics are not involved. No event shifting was used so the resolution of this jaggedness actually proves the overlapped thesis. As you will see when you continue through the 14 adjacent points, the logic was consistent on its very selective event selection. Note here how it took out the leading lobes just below the red line and then emphasized the ones just below. Once again, the initial jaggedness was the result of the intricate overlay of noise and signal, and eliminating that phenomenon is the essential proof of the logic. The fact that what comes out exhibits the proper event shape is the final verification, since we are not smart enough to force that result. This is a timed show, so relax and pay attention to the detail. Clicking will speed it of course. Click for the Vibroseis show (or put adaps.com/kinc.ppsx in your browser).