SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ 1 - 4 sin 2  W ~ 0.1.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)
Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
17 October 2006Parity Violating Electron Scattering1 Parity Violating Electron Scattering: Interplay Between Electroweak Physics and Hadronic Physics Weak.
Precision Measurements and New Physics Tatsu Takeuchi Virginia Tech January 10, Osaka U.
Flavor Beyond the Standard Model Zurab Tavartkiladze, Gela Devidze Tbilisi State University Volkswagen meeting 14, 15 March 2013, Tbilisi.
Discrete Space-Time Symmetries Xiao-Gang He USTC, Nanakai, and NTU 1. Discrete Space-Time Symmetries 2. The Down Fall of Parity P Symmetry 3. The Down.
Combined analysis of EDMs and Lepton Flavor Violating rare decays YASAMAN FARZAN IPM, Tehran.
Fundamental Symmetries in Nuclear Physics Michael Ramsey-Musolf, Chicago, January, 2007 Fifty years of parity-violation in nuclear physics Nuclear physics.
P. Langacker ICHEP2004 (8/16/04) Low Energy Electroweak Precision Tests Perspective –Motivations –Precision program WNC experiments Universality EDMs,
Baryogenesis and Higgs Phenomenology V. CiriglianoLANL C. LeeLBL S. TulinCaltech S. ProfumoUC Santa Cruz G. ShaugnessyWisconsin PRD 71: (2005) PRD.
Sub Z Supersymmetry M.J. Ramsey-Musolf Precision Electroweak Studies in Nuclear Physics.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Nuclei as Laboratories: Nuclear Tests of Fundamental Symmetries M.J. Ramsey-Musolf N. Bell V. Cirigliano J. Erler B. Holstein A. Kurylov C. Lee C. Maekawa.
Parity-Violating Electron Scattering Jeff Martin University of Winnipeg.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
The Big Bang, the LHC and the Higgs Boson Dr Cormac O’ Raifeartaigh (WIT)
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
ICHEP04 Beijing Global Electroweak fits and constraints on the Higgs mass Pete Renton Aug 2004 GLOBAL ELECTROWEAK FITS AND CONSTRAINTS ON THE HIGGS MASS.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Nuclear Physics and the New Standard Model M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
Electroweak Physics at an EIC: Theory Prospects M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Precision Electroweak Physics and QCD at an EIC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Parity-Violation with Electrons: Theoretical Perspectives M.J. Ramsey-Musolf.
Looking Through The Mirror: Parity Violation in the Future M.J. Ramsey-Musolf + many students, post- docs, collaborators, and colleagues.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Experimental tests of the SM (3): non-collider particle physics FK8022, Lecture 7 Core text: Further reading:
Flavor Beyond Standard Model G.G. Devidze High Energy Physics Institute of Tbilisi State University 1.Introduction 2.Flavor beyond the standard model 3.Heavy.
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
Introduction to Particle Physics How to compute the Universe?
Nuclear Theory & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, Newport News 2007 Fifty years of.
Electroweak Physics at an Electron-Ion Collider M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Chiral Symmetries and Low Energy Searches for New Physics M.J. Ramsey-Musolf Caltech Wisconsin-Madison.
Future Directions in Parity Violation: From Quarks to the Cosmos M.J. Ramsey-Musolf + many students, post- docs, collaborators, and colleagues PAVI ‘06.
Xiaochao Zheng, International Workshop on Positrons at JLab 1/64 C 3q Measurement Using Polarized e + /e - Beams at JLab – Introduction — Standard Model.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, INPC 2007 Fifty years of PV in nuclear.
PV DIS: SUSY and Higher Twist M.J. Ramsey-Musolf Caltech Wisconsin-Madison S. Mantry, K. Lee, G. Sacco Caltech.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
7 April, 2005SymmetriesTests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation:
Neutralino relic density in the CPVMSSM and the ILC G. Bélanger LAPTH G. B, O. Kittel, S. Kraml, H. Martyn, A. Pukhov, hep-ph/ , Phys.Rev.D Motivation.
Yingchuan Li Electroweak physics at EIC Brookhaven National Lab Feb. 3rd 2011, BNL.
Sally Dawson, BNL Standard Model and Higgs Physics FNAL LHC School, 2006 Introduction to the Standard Model  Review of the SU(2) x U(1) Electroweak theory.
The Higgs Boson Beate Heinemann, University of Liverpool  The Standard Model and Beyond  Tevatron and LHC  Tevatron Results on Higgs Searches  Future.
Electroweak Physics At The EIC (Electron-Ion Collider) William J. Marciano (May 17, 2010) 1. WEAK NC PARITY VIOLATION i) APV vs Pol Electron Scattering.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
Parity Violation: Past, Present, and Future M.J. Ramsey-Musolf.
1 Aslı Sabancı University of Helsinki and Helsinki Insititute of Physics (HIP) Electric Dipole Moments in U(1)’ Models DESY Theory Workshop (Collider Phenomenology)
SUSY Baryogenesis, EDMs, & Dark Matter: A Systematic Approach M.J. Ramsey-Musolf V. CiriglianoCaltech C. LeeINT S. TulinCaltech S. ProfumoCaltech PRD 71:
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, INPC 2007 Fifty years of PV in nuclear.
Marc Vanderhaeghen 1 Introduction LEPP16 Marc Vanderhaeghen LEPP16 Workshop Kupferberg, Mainz, April 4-7, 2016 New Vistas in Low-Energy Precision Physics.
Electroweak Theory Joint Belgian Dutch German School September 2007 Andrzej Czarnecki University of Alberta.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学 ~真空と時空への新たな挑戦~ 研究会 2013年5月23日〜25日
Precision Probes for Physics Beyond the Standard Model
Probing Supersymmetry with Neutral Current Scattering Experiments
张仁友 (南昌, ) 中国科学技术大学粒子物理与技术中心
Electroweak Physics at the EIC
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Probing New Physics with Neutral Current Measurements
Shufang Su • U. of Arizona
Neutron EDM with external electric field
Measurement of Parity-Violation in the N→△ Transition During Qweak
Presentation transcript:

SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ sin 2  W ~ 0.1

SUSY can affect scattering Neutrino-nucleus deep inelastic scattering Cross section ratios

Neutral currents mix  J  Z =  J  Q sin 2  W  J  EM SU(2) L U(1) Y Weak mixing depends on scale

Weak Mixing Angle: Scale Dependence sin 2  W  (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Czarnecki, Marciano Erler, Kurylov, MR-M

PV Electron Scattering SLACJefferson Lab Vernon W. Hughes

PV Electron Scattering SLACJefferson Lab

Interpretation of precision measurements How well do we now the SM predictions? Some QCD issues Proton Weak Charge Weak charge Q 2 =0.03 (GeV/c) 2 Form factors: MIT, JLab, Mainz Q 2 >0.1 (GeV/c) 2

Interpretation of precision measurements How well do we now the SM predictions? Some QCD issues Proton Weak Charge F P (Q 2,  -> 0) ~ Q 2 Use  PT to extrapolate in small Q 2 domain and current PV experiments to determine LEC’s

Q W and SUSY Radiative Corrections Tree Level Radiative Corrections sin 2 Flavor-independent Normalization Scale-dependence of weak mixing Flavor-dependent

Universal corrections muon decay gauge boson propagators

Oblique Parameters SM fit only No SUSY effects

Parameter Space Scan

Comparing Q w e and Q W p SUSY loops 3000 randomly chosen SUSY parameters but effects are correlated Effects in sin 2  W dominate Negligible SUSY loop impact on cesium weak charge 105 parameters: random scan Kurylov, Su, MR-M

Correlated Radiative Corrections total

RPV Corrections to Weak Charges sin 2 shift in

Other constraints, cont’d. MWMW CKM Unitarity APV  l2

Comparing Q w e and Q W p SUSY loops   -> e  + e  SUSY dark matter is Majorana RPV 95% CL fit to weak decays, M W, etc. Kurylov, Su, MR-M

Comparing Q w e and Q W p Can be a diagnostic tool to determine whether or not the early Universe was supersymmetric there is supersymmetric dark matter The weak charges can serve a similar diagnostic purpose for other models for high energy symmetries, such as left-right symmetry, grand unified theories with extra U(1) groups, etc.

Comparing Q w e and Q W p Erler, Kurylov, R-M Q W P = Q W e = Experiment SUSY Loops E 6 Z / boson RPV SUSY Leptoquarks SM

sin 2  W  (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Additional PV electron scattering ideas DIS-Parity, JLab Moller, JLab DIS-Parity, SLAC Czarnecki, Marciano Erler et al. Linear Collider e - e -

sin 2  W  (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Additional PV electron scattering ideas DIS-Parity, JLab Moller, JLab DIS-Parity, SLAC Czarnecki, Marciano Erler et al. Linear Collider e - e -

Neutrino-nucleus deep inelastic scattering conflicts with SUSY Cross section ratiosExp’t vs. SM Theory: NuTeV

- Nucleus DIS, Cont’d. Cross section ratios Radiative corrections sin 2  NC,CC  L,R

 Nucleus DIS: NuTeV K. McFarland, Rochester

NuTeV-SM Discrepancy Paschos-Wolfenstein Relation

- Nucleus DIS: SUSY Loop Corrections wrong sign NuTeV Kurylov, SU, MR-M

RPV Effects unconstrained elsewhere

- Nucleus DIS: RPV Effects wrong sign NuTeV Kurylov, SU, MR-M

 N scattering conflicts with SUSY sin 2  W  (GeV) SLAC E158 (ee)JLab Q-Weak (ep) e + e - LEP, SLD Atomic PV N deep inelastic Czarnecki, Marciano Erler, Kurylov, MR-M Increase V us for CKM unitarity (BNL E865, K e3 )

NuTeV Anomaly: An explanation?

Electric dipole moment (EDM) searches may test SUSY CP-violation T-odd, CP-odd by CPT theorem C: e - $ e + P: E $-E, S $ S

Electric dipole moment (EDM) searches may test SUSY CP-violation T-odd, CP-odd by CPT theorem C: e - $ e + P: E $-E, S $ S SM: CKM

Electric dipole moment (EDM) searches may test SUSY CP-violation T-odd, CP-odd by CPT theorem C: e - $ e + P: E $-E, S $ S SM: Strong CP Gluons: systems with quarks

Electric dipole moment (EDM) searches may test SUSY CP-violation f d SM d exp d future If SUSY CP violation is responsible for abundance of matter, will these experiments see an EDM? CKM

Electric dipole moment (EDM) searches may test new CP-violation f d SM d exp d future CKM Superfluid He UCN converter with high E-field E in t Pb + O–O– E ext Yale DeMille, Romalis

Electric dipole moment (EDM) searches may test new CP-violation f d SM d exp d future CKM 1: B from E Sample magnetization M  d e E/T E 2: E from B B V Sample voltage V  d e LANL Amherst

Electric dipole moment (EDM) searches may test new CP-violation f d SM d exp d future CKM LANSCE!SNS Superfluid He UCN converter with high E-field

Electric dipole moment (EDM) searches may test new CP-violation f d SM d exp d future CKM Washington Princeton Argonne…

Electric dipole moment (EDM) searches may test new CP-violation f d SM d exp d future CKM Storage ring: BNL JPARC… Also deuteron

Present n-EDM limit Proposed n-EDM limit “n-EDM has killed more theories than any other single experiment” B. Filippone Matter-Antimatter Asymmetry in the Universe Better theory

Electric dipole moment (EDM) searches may test SUSY CP-violation Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Present universeEarly universe Weak scalePlanck scale

Electric dipole moment (EDM) searches may test SUSY CP-violation Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition EDM: Standard SUSY - breaking Cohen, Kaplan, Nelson Huet & Nelson Riotto…..

Electric dipole moment (EDM) searches may test SUSY CP-violation Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition How model-dependent ? Theoretical uncertainties?

Present n-EDM limit Proposed n-EDM limit “n-EDM has killed more theories than any other single experiment” B. Filippone Matter-Antimatter Asymmetry in the Universe Better theory ?