Function [C]=cholesky(A) [n,m]=size(A); C=zeros(n,n); if (A(1,1)<%eps) then error('racine d un nombre negatif'); end C(1,1)=sqrt(A(1,1)); C(2:n,1)=A(2:n,1)/C(1,1);

Slides:



Advertisements
Similar presentations
Finding the Slope of a Line From Two Points
Advertisements

X and Y Intercepts.
P.6 Zeros of Functions.
Generating Multivariate Gaussian
1 Systems of Linear Equations (Optional) Special Matrices.
Adding First, you need to know… Associative Property of Addition When: (a + b) + c = a + (b + c) Commutative Property of Addition When: a + b= b + a.
EXAMPLE 1 Multiplying Decimals by Whole Numbers Find the product
Least Common Multiple (LCM)
Absolute Value Inequality
PROPERTIES OF EXPONENTS. PRODUCT OF POWERS PROPERTY.
Multiplying and Dividing Decimals by 10, 100, and 1,000
Place Value.
How to Multiply: Distributive x 62 x 60 x = 2790 Step 1: Multiply 45 by the expanded form of 62 (60+2). Step 2: Add together.
5-5 Solving Quadratic Equations Objectives:  Solve quadratic equations.
Solving equations with polynomials – part 2. n² -7n -30 = 0 ( )( )n n 1 · 30 2 · 15 3 · 10 5 · n + 3 = 0 n – 10 = n = -3n = 10 =
Solving Polynomial Functions involving Complex Numbers.
Solve by Factoring Zero Product Property.
Factoring Trinomials. To factor a trinomial squares, use the following relationships. A 2 + 2AB + B 2 = (A + B)(A + B) A 2 – 2AB + B 2 = ( A – B)(A –
Zero and negative exponents
Section 3.4 – Zeros of a Polynomial. Find the zeros of 2, -3 (d.r), 1, -4.
EXAMPLE 1 List possible rational zeros List the possible rational zeros of f using the rational zero theorem. a. f (x) = x 3 + 2x 2 – 11x + 12 Factors.
INTEGRALS – Negative Exponents. ** used the power rule INTEGRALS – Negative Exponents.
Lesson 4.5 Concept: How to Multiply Integers Guidelines: When multiplying integers….. If the integer signs are the same, the product is positive ( + +)
$100 $200 $300 $400 $100 $200 $300 $400 $300 $200 $100 Multiply by 1 digit numbers Multiply & estimate results Multiply by 2 digit numbers Multiply.
1-4 Properties of Real Numbers. Properties 1.Additive Identity – the sum of any number and zero is equal to the number. a + 0 = a 2.Multiplicative Identity.
Distributive Commutative Addition Zero Property Additive Inverse 0 Multiplicative Identity Commutative Multiplication Multiplicative Inverse Additive Identity.
Method of Least Squares Advanced Topic of Lecture on Astrometry.
Solving Quadratic Equations. Find the quadratic equation if the solutions are 3 and -2. x = 3 x = -2 Make them equal zero. x – 3 = 0x + 2 = 0 (x – 3)(x.
(2 x 1) x 4 = 2 x (1 x 4) Associative Property of Multiplication 1.
Adding and Subtracting Decimals Textbook page 102.
 If N= (P₁) ˣ ×(P₂)ʷ ×(P₃) ʸ  Then no. of factors of N=(x+1) ×(w+1) ×(y+1)  For example: N = 50² × 14  Find the total factors, prime factors, composite.
$100 $200 $300 $400 $100 $200 $300 $400 $300 $200 $100 Subtraction sentence with pictures Subtract to get zero Subtract & balance equations Ways to.
Example 4 Using Multiplication Properties SOLUTION Identity property of multiplication () 16 a. 6 = Find the product. () 16 a.b. 15– () 0 Multiplication.
Model the following problem using algebra tiles: (x + 4)(x – 4) x + 4 x - 4 x2x2.
Do Now: Evaluate each expression.
Addition Properties Associative Property of Addition
Properties of Operations
Commutative Property of Addition
Linear Inequalities in Two Variables
Multiplying 2 Digit Factors
Part 4.
Notes Over 3.4 The Rational Zero Test
Goal: use counters to add integers
Exponents: Negative & Zero
Zero Black Machined
Exponent Review ?.
Properties of Math (practice 1)
Multiplying & Dividing by Powers of Ten
Finding the Least Common Multiple (LCM)
Chapter Ten Exponents and Scientific Notation
Zeros to Quadratic Functions
Expanding and Simplifying Algebraic Expressions
Quadratic Patterns.
Expanded Form = 3, (3 x 1,000) + (5 x 100)
בשואה הגיעה ההיסטוריה היהודית לסופה מה מתחיל כעת עדיין איננו יודעים
Divisibility Rules.
Equivalent Ratio In the ratio a : b if the terms ‘a’ and ‘b’ are multiplied by the same non zero number, we get equivalent ratios.
How to determine whether a given set of vectors
Divisibility Rules.
Slope Determine whether the slope is positive, negative, Zero, or undefined.
1.
4 + (-5) = A. Start at zero B. Move ______ spaces ___________ to get to the first number. C. From there, move _____ spaces __________ D. My final answer.
Reference Angles.
Notes Over 6.6 Possible Zeros Factors of the constant
9-5 Factoring to Solve Quadratic Equations
 .
Section 8 Topics Agree / Disagree.
Finding the Least Common Multiple (LCM)
Properties of Numbers Review Problems.
Exponent practice.
Presentation transcript:

function [C]=cholesky(A) [n,m]=size(A); C=zeros(n,n); if (A(1,1)<%eps) then error('racine d un nombre negatif'); end C(1,1)=sqrt(A(1,1)); C(2:n,1)=A(2:n,1)/C(1,1); for j=2:n sum1=C(j,1:j-1)*C(j,1:j-1)'; if (A(j,j)-sum1)<%eps then error('racine d un nombre negatif'); end C(j,j)=sqrt(A(j,j)-sum1); C(j+1:n,j)=(A(j+1:n,j)-C(j+1:n,1:j-1)*C(j,1:j-1)')/C(j,j); end endfunction

function [x]= solinf(U,b) [n,m]=size(U); x=zeros(n,1); if abs(U(1,1))<%eps error('un pivot de Gauss n''est pas défini'); end x(1)=b(1)/U(1,1); for i=2:n if abs(U(i,i))<%eps error('un pivot de Gauss n''est pas défini'); end x(i)=(b(i)-U(i,1:i-1)*x(1:i-1))/U(i,i); end endfunction function [x]= solsup(U,b) [n,m]=size(U); x=zeros(n,1); if abs(U(n,n))<%eps error('un pivot de Gauss n''est pas défini'); end x(n)=b(n)/U(n,n); for i=n-1:-1:1 if abs(U(i,i))<%eps error('un pivot de Gauss n''est pas défini'); end x(i)=(b(i)-U(i,i+1:n)*x(i+1:n))/U(i,i); end endfunction

function [x]=resolchol(A,b) getf solinf.sci; getf solsup.sci; getf cholesky.sci; C=cholesky(A); y=solinf(C,b); x=solsup(C',y); endfunction function [i]=place(T,t) n=length(T) if (t T(n)) error('erreur : t n''est pas dans l''intervalle'); end MIN=1; MAX=n; while (MAX-MIN)>1 MIL=floor((MAX+MIN)/2); if (t>=T(MIL)) MIN=MIL; else MAX=MIL; end i=MIN; endfunction

function [A]=construct(t,r) getf place.sci; n=length(t); m=length(r); A=zeros(m,n); for j=1:m i=place(t,r(j)); A(j,i)=(r(j)-t(i+1))/(t(i)-t(i+1)); A(j,i+1)=(r(j)-t(i))/(t(i+1)-t(i)); end endfunction function [z]=mcnorm(A,y) getf resolchol.sci B=A'*A; x=A'*y; z=resolchol(B,x); endfunction