Paediatric breathing systems Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diab.DCA, Dip. Software statistics PhD (physio) Mahatma Gandhi medical.

Slides:



Advertisements
Similar presentations
INHALATION ANAESTHESIA BREATHING SYSTEMS Prepare and monitor anaesthesia in animals INHALATION ANAESTHESIA BREATHING SYSTEMS.
Advertisements

Respiratory System Physiology
The Ideal Breathing System
Functions of the Respiratory system
ANESTHETIC MACHINES.
CARBON DIOXIDE ABSORPTION
AMIR SALAH MODERN ANAESTHETIC MACHINE MODERN ANAESTHETIC MACHINE 1 of 4.
Mechanical Ventilaton Ramon Garza III, M.D.. Indications Airway instability Most surgical patients or trauma Primary Respirator Failure Mostly medical.
Breathing Machine. Design Requirements Provide/Remove 500cc of air Rate ≈ 15 breaths per minute Ability to vary volume of air, and rate Age (years)Weight.
pNeuton Transport Ventilator
Initiation of Mechanical Ventilation
AMIR SALAH MODERN ANAESTHETIC MACHINE MODERN ANAESTHETIC MACHINE 4 of 4.
Initial Ventilator Settings
PART 3: Breathing Circuit
AHP300 VENTILATOR Prepared by Caesar Rondina, EMTP, SCT, EMTP, CES
Parts of the Anesthetic Machine
The mechanics of breathing and Respiratory Volumes
A). When the carrier gas is quickly switched to 100% nitrous oxide (B). the halothane concentration decreases to 3% within 8 to 10 seconds A new steady-state.
Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diab. DCA, Dip. Software statistics PhD(physiology) Mahatma gandhi medical college and research institute,
Anesthesia Breathing Systems
Scavenging System A&A Pg 356  To reduce exposure to waste anesthetic gases  Can be active or passive scavenging system Active Scavenging System  Connected.
Anesthetic Breathing Circuits
Non-Rebreathing System  Used for patients weighing < 7 kg  Attach the clear, plastic hose to the fresh gas inlet (this tube comes from the vaporizer.
Breathing systems and the anaesthetic machine Zsolt Molnár SZTE, AITI.
Ventilators All you need to know is….
Dr Chaitanya Vemuri Int.Med M.D Trainee.  The choice of ventilator settings – guided by clearly defined therapeutic end points.  In most of cases :
AMIR SALAH MODERN ANAESTHETIC MACHINE MODERN ANAESTHETIC MACHINE 2 of 4.
Respiratory Physiology Part I
ASSISTED VENTILATION By: Dr.Saif Assistant Professor Of Paediatrics Allied Hospital Faisalabad.
Without reference, identify principles about volume/pressure and high frequency ventilators with at least 70 percent accuracy.
Oxygenation And Ventilation
ANAESTHESIA BREATHING CIRCUITS
Breathing systems and the anaesthetic machine Zsolt Molnár SZTE, AITI
Understanding Mapleson Circuits
1 © 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Sir Ivan Whiteside Magill
PART 3: Breathing Circuit
How To Ventilate ICU Patient Dr Mohammed Bahzad MBBS.FRCPC,FCCP,FCCM Head Of Critical Care Department Mubarak Alkbeer Hospital.
Topic 6.4 Gas Exchange Topic 6: Human Health and Physiology.
Intercostal drainage Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diab. DCA, Dip. Software statistics PhD(physiology) Mahatma Gandhi medical college.
VENTILATION CHAPTER 4 DR. CARLOS ORTIZ BIO-208. PARTIAL PRESSURES OF RESPIRATORY GASES AIR IS A GAS MIXTURE OF MOSTLY N 2 AND O 2. THIS TRACES OF ARGON,
Anesthesia Machine Circuits
Basic Pulmonary Mechanics during Mechanical Ventilation
Ventilators Tuesday, 20 April 2004 Bill McCulloch.
Basic Concepts in Adult Mechanical Ventilation
These are measured with a spirometer This is estimated, based on
The purpose of the breathing rhythm is to ventilate the lungs to allow delivery of oxygen to the alveoli, and elimination of the waste gas carbon dioxide.
Parts of the Anesthetic Machine A&A Pages
PART 3: Breathing Circuit
Concentration and second gas effect Dr. S. Parthasarathy MD, DA, DNB, Dip Diab.MD,DCA, Dip software based statistics, PhD (physiology)
6.4 Gas Exchange Understanding: -Ventilation maintains concentration gradients of oxygen and carbon dioxide between air in alveoli and blood flowing in.
BREATHING SYSTEMS.
PRESSURE CONTROL VENTILATION
AMIR SALAH MODERN ANAESTHETIC MACHINE MODERN ANAESTHETIC MACHINE 3 of 4.
PART 3: Breathing System Parts
Non-Rebreathing System
Mechanical Ventilator 1
Monaghan 225 Ventilator Use Under Hyperbaric Conditions
Mechanical ventilator
These are measured with a spirometer This is estimated, based on
Basic Concepts in Adult Mechanical Ventilation
Non-Rebreathing System
The Anaesthesia Machine
What it Means to Breathe
Mechanical ventilator
The inventions of John Blease
Breathing Systems Tom Williams.
PULMONARY SYSTEM.
6.4 Gas Exchange Applications:
Presentation transcript:

Paediatric breathing systems Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diab.DCA, Dip. Software statistics PhD (physio) Mahatma Gandhi medical college and research institute, puducherry – India

Just after the tea session ----

We are moving on to the T session

Dr Philip Ayre

Lets go back !! It was because Dr. Phillip Ayre lost a child due to high pressure gas flow, he came out with tubing for children to breathe safely in 1937 termed Ayre’s T piece. anaesthetic breathing systems for paediatric use have undergone innumerable modifications to suit different patients and situations.

Circuit or system !! Such systems were also called circuits, but as the gas flow is not circuitous in many of them, the word breathing system is preferred. Most of the systems can also be used with ventilators. What is a breathing system?

Definition A breathing system is defined as an assembly of components which connects the patient’s airway to the anaesthetic machine creating an artificial atmosphere, from and into which the patient breathes.

Components A fresh gas entry port / delivery tube A reservoir for gas, in the form of a bag A port to connect it to the patient's airway; An expiratory port / valve Corrugated tubes for connecting these components.

Components A carbon dioxide absorber if total rebreathing is to be allowed Flow directing valves may or may not be used

SOME DEFINITIONS. Breathing tubing made of either rubber or plastic are usually corrugated to enable bending without kinking corrugation may increase compliance - important in ventilating noncompliant lungs. more gas rests in the tubing -- excess dead space * IMPORTANT IN PAEDIATRICS. tubing with smooth inner are also in the offing

Reservoir bags (RB - either a tube or a bag. monitoring respiration ventilating the patient reservoir of gas to meet patient’s inspiratory flow requirements. Otherwise HIGH fresh gas flows (FGF) needed. We should keep in mind that anaesthesia machines give continuous supply of gas and all our patients are intermittent inhalers.

Expiratory port valve (APL valve) --user adjustable valve that releases gases to atmosphere or the scavenging system. It is usually made of metal with a seat and disc against a spring. paediatric APL valve: less resistance, safer and effective scavenging-possible.

DEFINITIONS The afferent limb is that part of the breathing system which delivers the fresh gas from the machine to the patient. reservoir is placed in this limb as in Mapleson A, B, C and Lack’s systems, afferent reservoir systems (ARS).

Definitions The efferent limb -part of the breathing system which carries expired gas from the patient and vents it to the atmosphere through the expiratory valve/port. reservoir placed in this limb as in Mapleson D, E, F and Bain systems, efferent reservoir systems (ERS).

Apparatus dead space It is the volume of the breathing system from the patient- end to the point up to which, to and fro movement of expired gas takes place. A. afferent reservoir system, the apparatus dead space extends up to the expiratory valve positioned near the patient. B. efferent reservoir system, the dead space extends up to the point of FG entry C. In systems where inspiratory and expiratory limbs are separate, it extends up to the point of bifurcation

SHORT BREAK. AS A GUEST SPEAKER IN GANDHI JAYANTHI CELEBRATION IN SCHOOL. I WAS ELABORATING ABOUT THE PRINCIPLES OF NONVIOLENCE, DANDI MARCH,QUIT INDIA MOVEMENT KHADI DRESS ETC….

AFTER I FINISHED ONE FELLOW STOOD UP TO ASK A DOUBT. ‘ SIR, YOU HAVE SPOKEN NICELY ON GANDHI IN THIS GANDHI JAYANTHI FUNCTION ---- WHO IS JAYANTHI ? PLEASE TELL US SOMETHING SIR’

Certain characteristics which differ in paediatric patients Minimal resistance : resistance is increased according to the fourth power of radius and hence a wide bore tube with diameter of not less than 1 cm is ideal. less dead space Eg.- 3 kg infant – Tidal volume : 21 ml (7ml/kg)

Concerns in paediatrics Lightness and ease of use. Ribs are horizontal and breathing is diaphragmatic. The infant diaphragm has mainly type 1 fibres and easily fatigued. Increased CO 2 production (8ml/kg in infants Vs 4 ml/kg in adults.) Any increase in minute ventilation is due to increase in rate than tidal volume.

T piece

The T piece system -- light metal tube, 1 cm in diameter, and 5 cm in length with a side arm. FGF enters the system through the side expired gas goes to the atmosphere. system is short diameter is more than trachea with no valves the resistance is minimal. The dead space is very less as it is only up to the point of entry of FGF. Air dilution - prevented by a FGF equivalent to peak inspiratory flow rate (PIFR). These factors suit its use in paediatrics.

T AND MODIFICATIONS.

LACK AND BAINS

So almost every thing is around T

The pattern of controlled ventilation (control is with us), Low resp. rate High tidal volume Less inspiration time. Long exp. Pause then we need less FGF

Curve -- normocarbia

Jackson rees FGF req. Body weight (kg) & Fresh gas flow (L/min) 5 kg : kg : kg : kg : kg : kg : kg : kg : 3.3 ↑ ↑ SPONTCONTROLLED Ventilator – 15 breaths/min TV 10 ml/kg approx --ok

D, E and F In simple terms, controlled ventilation is possible with 70 ml/kg and spontaneous ventilation may need upto 250 ml/kg to maintain normocarbia. It should be emphasized that these values are guidelines only; if there is evidence of rebreathing (e.g. an increase in the end tidal CO2 concentration or unexpected hyperventilation), the flow rate should be increased. Functional analysis of D, E and F are similar.

CIRCLE SYSTEMS

APPREHENSIONS IN PAEDIATRIC USE Connectors, unidirectional valves and canisters cause ↑ dead space ↑ resistance Is low flow possible? introduction of low resistance valves, improved soda lime canisters and low dead space connectors--done low flow possible - studies prove Heat and fluid conservation efficient scavenging Inhalational agent use decrease

Unidirectional valves Resistance inversely proportional fourth power of radius. Pressure needed to lift the valve P = W ÷ D 2 small light discs-- ok

Divided airway adapter revell circulator

Miscellaneous systems Humphrey ADE MERA F are also used in paediatrics. SO ! WHAT IS THE CARRY HOME MESSAGE?

Summary A number of systems are in vogue. Dead space, resistance, ↑ CO2 production, light weighted systems – points to think about. Controlled ventilation is most often used Jackson rees, Mapleson D and Bains Circle

Jackson rees:Spont. –ok but FGF ml/kg Contrl. Good ml/kg Mapleson D and Bains : same as JR Circle: Paed. Special circle? Adult system with paediatric tubing ok Low flow anaesthesia,less agent and FGF costs,scavenging,humidity and heat conservation –thoughts swing in favour of circles in the coming era

After all, its us we decide We should know the system. We should know that ETT offers maximal resistance We should be well versed,experienced A proper pre op check of the system is a must

When you inhale you inspire But when you don’t ---

Questions for PGs 1. What will happen if Mapleson A is connected to a ventilator? 2. What will happen if bain’s circuit is connected to a ventilator? 3.What is the amount of gas let out thro spill valve each time? RR 15/min- tidal volume 500 FGF 4.5 l/min. 1 = Mapleson a system becomes dead space 2. It becomes mapleson E 3. Think and answer

Thank you