USE OF GEANT4 FOR LHCB RICH SIMULATION S. Easo, RAL, 5-7-2001 LHCB AND ITS RICH DETECTORS. TESTBEAM DATA FOR LHCB-RICH. OVERVIEW OF GEANT4 SIMULATION.

Slides:



Advertisements
Similar presentations
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
Advertisements

Assisi – 23 June 2005 Tito Bellunato 1 Status of the LHCb RICH detector and the HPD Beauty 2005 Assisi – 23 June 2005 Tito Bellunato – Università degli.
Mar 31, 2005Steve Kahn -- Ckov and Tof Detector Simulation 1 Ckov1, Ckov2, Tof2 MICE Pid Tele-Meeting Steve Kahn 31 March 2005.
25/03/2003Simulation Application for the LHCb Experiment CHEP March 2003 Presented by: W. Pokorski / CERN Authors: I. Belyaev, Ph. Charpentier,
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
Could CKOV1 become RICH? 1. Simulations 2. Sensitive area of the detection plane 3. Example of a workable solution 4. Geometrical efficiency of the photon.
Progress and plans on PID simulation and reconstruction Yordan Karadzhov Sofia university St. Kliment Ohridski.
Jun 27, 2005S. Kahn -- Ckov1 Simulation 1 Ckov1 Simulation and Performance Steve Kahn June 27, 2005 MICE Collaboration PID Meeting.
Marco Musy INFN and University of Milano-Bicocca Pylos, June 2002 Aerogel as Cherenkov radiator for RICH detectors for RICH detectors.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Overview of LHCb RICH Detector Development On Behalf of LHCb-RICH Group RICH2004 Playa Del Carmen, Mexico December 4, 2004 S. Easo Rutherford-Appleton.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
1 Fast Timing via Cerenkov Radiation‏ Earle Wilson, Advisor: Hans Wenzel Fermilab CMS/ATLAS Fast Timing Simulation Meeting July 17,
RICH detectors for LHCb Tito Bellunato INFN Milano-Bicocca On behalf of the LHCb RICH collaboration 10th International Conference on Instrumentation for.
Implementing a dual readout calorimeter in SLIC and testing Geant4 Physics Hans Wenzel Fermilab Friday, 2 nd October 2009 ALCPG 2009.
Åsmund Skjæveland Magnetic Distortion of HPD Images.
HPD Performance in the RICH Detectors of the LHCb Young Min Kim University of Edinburgh IoP HEPP Conference – April
Development of the RICH Detectors in LHCb S. Easo Rutherford-Appleton Laboratory June 5, 2002 RICH2002 PYLOS, GREECE For the LHCb-RICH Group.
RICH SIMULATION USING GEANT4 S.EASO, RAL OBJECTIVES OF THE SIMULATION. CURRENT STATUS AND PLANS. INTEGRATION WITH LHCb SOFTWARE. SUMMARY.
The calibration and alignment of the LHCb RICH system Antonis Papanestis STFC - RAL for the LHCb Collaboration.
Performance of the LHCb RICH detectors On behalf of the LHCb-RICH Collaboration Sajan Easo Rutherford-Appleton Laboratory IEEE-NSS: Dresden, Germany,
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
An overview of the LHCb RICH detectors RICH 2007 Trieste Oct 2007 Neville Harnew University of Oxford On behalf of the LHCb RICH Collaboration.
Jin Huang BNL.  GEANT4 customary code  PHENIX simulation/analysis  EICROOT by EIC taskforce at BNL (learning) RICH Discussions J. Huang 2.
Simulations Report E. García, UIC. Run 1 Geometry Radiator (water) 1cm x 2cm x 2cm with optical properties Sensitive Volume (hit collector) acrylic (with.
R Lambert, LHCb RICHPD07, 28th June The LHCb Pixel Hybrid Photon Detectors Robert W. Lambert, University of Edinburgh On behalf of the LHCb RICH.
CLAS12 Rich Imaging Cherenkov Counter
Status Report particle identification with the RICH detector Claudia Höhne - GSI Darmstadt, Germany general overview focus on ring radius/ Cherenkov angle.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
Mauro Iodice INFN Roma (Italy) Hall A Collaboration Meeting - JLAB May 18, 2004.
Simulations of Light Collection Efficiency (JLab Hall C 12 GeV Kaon Aerogel Detector) Laura Rothgeb Nuclear Physics Group Catholic University of America.
RICH detector for CLAS12 CLAS12 Technical Workshop P. Rossi Laboratori Nazionali di Frascati - INFN.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
RICH Simulation in LHCb LHC Detector Simulation Workshop S.Easo, RAL, On behalf of LHCb–RICH group.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
Particle Identification with the LHCb Experiment
1 Performance of a Magnetised Scintillating Detector for a Neutrino Factory Scoping Study Meeting U.C. Irvine Monday 21 st August 2006 M. Ellis & A. Bross.
RICH meeting, F.Muheim1 Proposal for MAPMTs as Photodetectors for the LHCb RICH Franz Muheim University of Edinburgh on behalf of the MAPMT group.
1 Limitations in the use of RICH counters to detect tau-neutrino appearance Tord Ekelöf /Uppsala University Roger Forty /CERN Christian Hansen This talk.
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
TORCH IOP meeting Manchester March 31, 2015 TORCH Maarten van Dijk On behalf of the TORCH collaboration (CERN, University of Oxford,
The RICH detectors of LHCb and the proposed upgrade Antonis Papanestis On behalf of the LHCb RICH collaboration 1.
23/02/07G. Vidal-Sitjes, VCI2007 Vienna Conference on Instrumentation1 The LHCb RICH detector G. Vidal-Sitjes on behalf of the LHCb RICH team Outline:
TORCH – a Cherenkov based Time-of- Flight Detector Euan N. Cowie on behalf of the TORCH collaboration E N Cowie - TORCH - TIPP June 2014.
Study of Cherenkov detectors for high momentum charged particle identification in ALICE experiment at LHC Guy Paic Instituto de Ciencias Nucleares UNAM.
Magnetic Shielding Studies of the LHCb RICH Photon Detectors Mitesh Patel, Marcello Losasso, Thierry Gys (CERN )
The Ring Imaging Cherenkov Detectors for LHCb Antonis Papanestis CCLRC – RAL On behalf of the LHCb RICH group.
LHCb Simulation LHCC Computing Manpower Review 3 September 2003 F.Ranjard / CERN.
The magnetic calibration procedure is performed in dedicated LED scans with dipole field ON and OFF. Scans with field OFF are used to reconstruct the calibration.
PhD thesis: Simulation & Reconstruction for the PANDA Barrel DIRC Official name: Open charm analysis tools Supervisor: Prof. Klaus Peters Maria Patsyuk.
Focusing Aerogel RICH Optimization A.Yu.Barnyakov, M.Yu.Barnyakov, V.S.Bobrovnikov, A.R.Buzykaev, V.V.Gulevich, S.A.Kononov, E.A.Kravchenko, A.P.Onuchin.
Development of RICH Detector and Large-area HPD for LHCb Experiment
Status of the PandaRoot simulation of the Forward RICH
PCID – Projectile Charge Identification Detector
Status of GEANT4 in LHCb S. Easo, RAL, The LHCb experiment.
GAUSS - GEANT4 based simulation for LHCb
Simulation results for the upgraded RICH detector in the HADES experiment. Semen Lebedev1,3, Jürgen Friese2, Claudia Höhne1, Tobias Kunz2, Jochen Markert4.
Particle Identification in LHCb
The Pixel Hybrid Photon Detectors of the LHCb RICH
Multianode Photo Multipliers for Ring Imaging Cherenkov Detectors
on behalf of LHCb RICH Group
Progress on the Focusing DIRC R&D
LHCb Particle Identification and Performance
GAUSS - GEANT4 based simulation for LHCb
Particle Identification with the LHCb Experiment
How can we study the magnetic distortion effect?
Presentation transcript:

USE OF GEANT4 FOR LHCB RICH SIMULATION S. Easo, RAL, LHCB AND ITS RICH DETECTORS. TESTBEAM DATA FOR LHCB-RICH. OVERVIEW OF GEANT4 SIMULATION. DESCRIPTION AND VERIFICATION OF SIMULATION. RESULTS ON PHOTOELECTRON YIELD. SUMMARY AND PROSPECTS.

Introduction to LHCb and its RICH Detectors LHCb : Precision  easurements of CP Asymmetries in B-Decays. Particle ID: Essential component of LHCb. Ex: Separate Pions and Kaons in data. Signal: B d --> pi + pi -. Backgrounds: B d -->K + pi -, B s -->K + pi -, B s -->K + K -. Signal: B s --> D s + K - Background: B s --> D s + pi -.

LHCB Detector Two RICH detectors covering polar angles mrad. Upstream Detector, RICH1 : Aerogel + C 4 F 10 for momentum GeV/c. Downstream Detector, RICH2: CF 4 for particles upto 100 GeV/c. Combination of Tilted Spherical mirrors and plane mirrors. Photon Detection: HPDs which cross-focus electrons on Silicon pixel detectors. HPD coverage 2.9 sq. meters : granularity 2.5 sq. mm, channels.

RICH TESTBEAM SETUP

TESTBEAM DATA SET Data Taken in June RICH1 Geometry, C410 Radiator, 120 GeV/c Pion(-) Beam. Three 80 mm Hpds with 61- pixel Silicon Anodes. Analogue Readout. Run Used: Pressure= 164 mbar, Temp = 19 degree C. (ring entirely on one of the HPDs). Results from data Analysis and Fortran Simulation are in an LHCb internal note and are quoted in the RICH TDR.

OVERVIEW OF THE SIMULATION Simulation:GEANT4 Graphics: OPENGL

OVERVIEW OF THE GEANT4 SIMULATION I used the standard GEANT4 procedures as much as possible. Some of the GEANT4 ‘Physics Processes’ depend on the atomic properties of the materials used in the program. Certain ‘ process customizations’ were necessary for simulating specific aspects of the RICH Test Beam Detector. I shall be describing these during this presentation. All Histograms from GEANT4 are made using LIZARD. The main parts of the Simulation procedure are: Photon Generation, Photon transportation, Photoelectron generation and creation of hits by the electrons.

Generation of Photons Mean in Simulation=20.87 mrad. (Using HERA-B parametrization for Ref. Index of C4F10 ) In Real Data: Cherenkov Angle= mrad Cherenkov Angle in Radians at Photon Generation. Some of the photons generated, are killed before they reach the Photo Detector by processes which depend on the Photon energy.

Optical Reflection at the Mirror Red: Photons Before Reflection at Mirror. Blue: Photons After Reflection at Mirror. Photon Wave Length in nm Number of Photons nm Solid Curve: After Mirror/Before Mirror. Dots: Mirror Reflectivity. Ratio: Blue/Red

Optical Transmission Through Quartz Number of Photons nm Photon Wave Length in nm Red: Photons before entering Quartz. Blue: Photons just before exiting quartz. Ratio: Blue/Red Loss from Reflection at Quartz Entrance and from Transmission.

HPD Simulation We have the data for the Quantum Efficiency and the data for parametrizing the cross-focussing of the photoelectrons. The Standard Geant4 Photoelectric process is not suitable for this application. (It relies on the atomic properties of the photocathode.) I implemented a process which generates electrons using the above data as input. (This process is a class derived from the G4DiscreteProcess class.)

HPD SIMULATION Green Lines: Photons. Red Lines: Photoelectrons. Blue Circles: Frame of HPD. Quartz Window, Photocathode and Silicon Detector are shown also. Simulation Picture using OPENGL.

Hpd Photoelectric Effect Number of Photons Red: Photons incident on Photocathode. Blue: Photons converted to Photoelectrons. nm Photon Wave Length in nm Ratio: Blue/ Red Solid Line: Ratio Red Boxs: Quantum Efficiency

HPD Hit creation The standard Geant4 Process uses the material properties of Silicon to calculate the energy loss. For the current application, I just wanted to create hits from the photoelectrons which have upto 20 keV/c momentum. I created a special simple process for the Hpd Silicon by which, low momentum charged particles loose all their momentum and die. This shall be modified in the future. It also takes care of the effects of backscattering. The Silicon pixels are constructed as sensitive volumes in the ‘Geant4 ReadOut’ geometry so that the standard Geant4 digitization procedure finds the correct pixel hit. (The few dead pixels in the data are kept insensitive).

Preliminary Estimate of Simulation uncertainty Ref. Index parametrization Hpd1 Hpd2 Quantum Efficiency 5% change Cathode non-uniformity Total Main sources of uncertainty

Photoelectron Yield Real data GEANT4 Fortran Simulation Simulation Hpd Hpd

Summary and Prospects The LHCb-RICH testbeam is simulated using GEANT4. The Simulated photoelectron yield agrees with that from data. Some of the processes developed for this testbeam simulation are useful for LHCb - RICH detector simulation as well. The simulation all the detectors in LHCb is expected to be done using GEANT4 in the GAUDI framework. Hence more interaction between the GEANT4 collaboration and LHCb software group are expected in the future.