EHRs: Designing modules with concurrent methods Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology February 27,

Slides:



Advertisements
Similar presentations
Elastic Pipelines and Basics of Multi-rule Systems Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology February.
Advertisements

An EHR based methodology for Concurrency management Arvind (with Asif Khan) Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology.
Constructive Computer Architecture: Multirule systems and Concurrent Execution of Rules Arvind Computer Science & Artificial Intelligence Lab. Massachusetts.
Computer Architecture: A Constructive Approach EHRs: Designing modules with concurrent methods Teacher: Yoav Etsion Taken (with permission) from Arvind.
Constructive Computer Architecture: FIFO Lab Comments Revisiting CF FIFOs Andy Wright TA October 20, 2014http://csg.csail.mit.edu/6.175L14-1.
Asynchronous Pipelines: Concurrency Issues Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology October 13, 2009http://csg.csail.mit.edu/koreaL12-1.
March, 2007http://csg.csail.mit.edu/arvindIPlookup-1 IP Lookup Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology.
September 24, L08-1 IP Lookup: Some subtle concurrency issues Arvind Computer Science & Artificial Intelligence Lab.
December 12, 2006http://csg.csail.mit.edu/6.827/L24-1 Scheduling Primitives for Bluespec Arvind Computer Science & Artificial Intelligence Lab Massachusetts.
Pipelining combinational circuits Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology February 20, 2013http://csg.csail.mit.edu/6.375L05-1.
Constructive Computer Architecture: Guards Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology September 24, 2014.
Constructive Computer Architecture Tutorial 2 Advanced BSV Andy Wright TA September 26, 2014http://csg.csail.mit.edu/6.175T02-1.
September 22, 2009http://csg.csail.mit.edu/koreaL07-1 Asynchronous Pipelines: Concurrency Issues Arvind Computer Science & Artificial Intelligence Lab.
Constructive Computer Architecture Sequential Circuits Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology
Elastic Pipelines: Concurrency Issues Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology February 28, 2011L08-1http://csg.csail.mit.edu/6.375.
Constructive Computer Architecture Sequential Circuits - 2 Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology.
Constructive Computer Architecture: Control Hazards Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology October.
February 20, 2009http://csg.csail.mit.edu/6.375L08-1 Asynchronous Pipelines: Concurrency Issues Arvind Computer Science & Artificial Intelligence Lab Massachusetts.
Modular Refinement Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology March 8,
Simple Inelastic and Folded Pipelines Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology February 14, 2011L04-1.
October 20, 2009L14-1http://csg.csail.mit.edu/korea Concurrency and Modularity Issues in Processor pipelines Arvind Computer Science & Artificial Intelligence.
Elastic Pipelines: Concurrency Issues
EHRs: Designing modules with concurrent methods
EHRs: Designing modules with concurrent methods
Concurrency properties of BSV methods and rules
Bluespec-6: Modeling Processors
Scheduling Constraints on Interface methods
Blusepc-5: Dead cycles, bubbles and Forwarding in Pipelines Arvind
Sequential Circuits Constructive Computer Architecture Arvind
Sequential Circuits: Constructive Computer Architecture
Caches-2 Constructive Computer Architecture Arvind
in Pipelined Processors
Performance Specifications
Pipelining combinational circuits
Multirule Systems and Concurrent Execution of Rules
Constructive Computer Architecture: Guards
Sequential Circuits Constructive Computer Architecture Arvind
Pipelining combinational circuits
EHR: Ephemeral History Register
Constructive Computer Architecture: Well formed BSV programs
Blusepc-5: Dead cycles, bubbles and Forwarding in Pipelines Arvind
in Pipelined Processors
Constructive Computer Architecture Tutorial 3 RISC-V Processor
Control Hazards Constructive Computer Architecture: Arvind
Modeling Processors: Concurrency Issues
Modules with Guarded Interfaces
Pipelining combinational circuits
Sequential Circuits - 2 Constructive Computer Architecture Arvind
Elastic Pipelines: Concurrency Issues
Multirule systems and Concurrent Execution of Rules
IP Lookup: Some subtle concurrency issues
Computer Science & Artificial Intelligence Lab.
in Pipelined Processors
Elastic Pipelines: Concurrency Issues
Pipelined Processors Arvind
Elastic Pipelines and Basics of Multi-rule Systems
Constructive Computer Architecture: Guards
Elastic Pipelines and Basics of Multi-rule Systems
Control Hazards Constructive Computer Architecture: Arvind
Pipelined Processors Constructive Computer Architecture: Arvind
Multirule systems and Concurrent Execution of Rules
IP Lookup: Some subtle concurrency issues
Bluespec-5: Scheduling & Rule Composition
Tutorial 4: RISCV modules Constructive Computer Architecture
Modeling Processors Arvind
Modular Refinement Arvind
Control Hazards Constructive Computer Architecture: Arvind
Implementing for Correct Concurrency
Constructive Computer Architecture: Well formed BSV programs
Caches-2 Constructive Computer Architecture Arvind
Presentation transcript:

EHRs: Designing modules with concurrent methods Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology February 27, L07-1

Elastic pipeline x fifo1inQ f1f2f3 fifo2outQ rule stage1 if (True); fifo1.enq(f1(inQ.first()); inQ.deq();endrule rule stage2 if (True); fifo2.enq(f2(fifo1.first()); fifo1.deq();endrule rule stage3 if (True); outQ.enq(f3(fifo2.first()); fifo2.deq();endrule Whether these rules can fire concurrently depends crucially on the properties of fifo methods February 27, 2013http://csg.csail.mit.edu/6.375L07-2

Designing FIFOs February 27, L07-3

module mkCFFifo (Fifo#(1, t)); Reg#(t) data <- mkRegU; Reg#(Bool) full <- mkReg(False); method Action enq(t x) if (!full); full <= True; data <= x; endmethod method Action deq if (full); full <= False; endmethod method t first if (full); return (data); endmethod endmodule One-Element FIFO n not empty not full rdy enab rdy enab enq deq Fifo module February 27, 2013http://csg.csail.mit.edu/6.375L07-4 Can enq and deq execute concurrently

module mkCFFifo (Fifo#(2, t)); Reg#(t) da <- mkRegU(); Reg#(Bool) va <- mkReg(False); Reg#(t) db <- mkRegU(); Reg#(Bool) vb <- mkReg(False); method Action enq(t x) if (!vb); if va then begin db <= x; vb <= True; end else begin da <= x; va <= True; end endmethod method Action deq if (va); if vb then begin da <= db; vb <= False; end else begin va <= False; end endmethod method t first if (va); return da; endmethod endmodule Two-Element FIFO Assume, if there is only one element in the FIFO it resides in da db da Can enq and deq be ready concurrently? Do enq and deq conflict? February 27, 2013http://csg.csail.mit.edu/6.375L07-5

BSV model needs to be extended to express Fifos with concurrent methods EHR: Ephemeral History Registers February 27, L07-6

EHR: Register with a bypass Interface r[0] < w[0] DQ 0 1 r[0] w[0].data w[0].en w[0] < r[1] r[1] – if write is not enabled it returns the current state and if write is enabled it returns the value being written r[1] normal bypass February 27, 2013http://csg.csail.mit.edu/6.375L07-7

Ephemeral History Register (EHR) r[0] < w[0] DQ 0 1 w[0].data w[0].en 0 1 w[1].data w[1].en w[i+1] takes precedence over w[i] Dan Rosenband [MEMOCODE’04] r[0] r[1] w[0] < w[1] < ….r[1] < w[1] February 27, 2013http://csg.csail.mit.edu/6.375L07-8

Designing FIFOs using EHRs February 27, L07-9

One-Element Pipelined FIFO module mkPipelineFifo(Fifo#(1, t)) provisos(Bits#(t, tSz)); Reg#(t) data <- mkRegU; Ehr#(2, Bool) full <- mkEhr(False); method Action enq(t x) if(!full[1]); data <= x; full[1] <= True; endmethod method Action deq if(full[0]); full[0] <= False; endmethod method t first if(full[0]); return data; endmethod endmodule first < enq deq < enq first < deq One can enq into a full Fifo provided someone is trying to deq from it simultaneously. February 27, 2013http://csg.csail.mit.edu/6.375L07-10

One-Element Bypass FIFO using EHRs module mkBypassFifo(Fifo#(1, t)) provisos(Bits#(t, tSz)); Ehr#(2, t) data <- mkEhr(?); Ehr#(2, Bool) full <- mkEhr(False); method Action enq(t x) if(!full[0]); data[0] <= x; full[0] <= True; endmethod method Action deq if(full[1]); full[1] <= False; endmethod method t first if(full[1]); return data[1]; endmethod endmodule enq < first enq < deq first < deq One can deq from an empty Fifo provided someone is trying to enq into it simultaneously. February 27, 2013http://csg.csail.mit.edu/6.375L07-11

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz)); Ehr#(2, t) da <- mkEhr(?); Ehr#(2, Bool) va <- mkEhr(False); Ehr#(2, t) db <- mkEhr(?); Ehr#(2, Bool) vb <- mkEhr(False); rule canonicalize if(vb[1] && !va[1]); da[1] <= db[1]; va[1] <= True; vb[1] <= False; endrule method Action enq(t x) if(!vb[0]); db[0] <= x; vb[0] <= True; endmethod method Action deq if (va[0]); va[0] <= False; endmethod method t first if(va[0]); return da[0]; endmethod endmodule Two-Element Conflict-free FIFO Assume, if there is only one element in the FIFO it resides in da db da first CF enq deq CF enq first < deq February 27, 2013http://csg.csail.mit.edu/6.375L07-12

Scheduling constraints due to multiple modules rule ra; aTob.enq(fa(x)); if (bToa.nonEmpty) begin x <= ga(bToa.first); bToa.deq; end endrule rule rb; y <= gb(aTob.first); aTob.deq; bToa.enq(fb(y)); endrule aTobbToa Concurrent fifofifo scheduling?CF CFpipeline CFbypass pipelineCFpipeline pipelinebypass bypassCF bypasspipelinebypass  Can ra and rb be scheduled concurrently? ra rb aTob bToa x y fifos are initially empty February 27, 2013http://csg.csail.mit.edu/6.375L07-13

N-element Conflict-free FIFO an enq updates enqP and puts the old value of enqP and enq data into oldEnqP and newData, respectively. It also sets enqEn to false to prevent further enqueues a deq updates deqP and sets deqEn to false to prevent further dequeues Canonicalize rule calculates the new count and puts the new data into the array and sets the enqEn and deqEn bits appropriately enqPdeqP enqEndeqEn oldEnqP newData locks for preventing accesses until canonicalization temp storage to hold values until canonicalization February 27, 2013http://csg.csail.mit.edu/6.375L07-14

Pointer comparison enqP and deqP can contain indices for upto twice the size of the FIFO, to distinguish between full and empty conditions Full: enqP == deqP + FIFO_size Empty: enqP == deqP February 27, 2013http://csg.csail.mit.edu/6.375L07-15

N-element Conflict-free FIFO module mkCFFifo(Fifo#(n, t)) provisos(Bits#(t, tSz), Add#(n, 1, n1), Log#(n1, sz), Add#(sz, 1, sz1)); Integer ni = valueOf(n); Bit#(sz1) nb = fromInteger(ni); Bit#(sz1) n2 = 2*nb; Vector#(n, Reg#(t)) data <- replicateM(mkRegU); Ehr#(2, Bit#(sz1)) enqP <- mkEhr(0); Ehr#(2, Bit#(sz1)) deqP <- mkEhr(0); Ehr#(2, Bool) enqEn <- mkEhr(True); Ehr#(2, Bool) deqEn <- mkEhr(False); Ehr#(2, t) newData <- mkEhr(?); Ehr#(2, Maybe#(Bit#(sz1))) oldEnqP <- mkEhr(Invalid); February 27, 2013http://csg.csail.mit.edu/6.375L07-16

N-element Conflict-free FIFO continued-1 rule canonicalize; Bit#(sz1) cnt = enqP[1] >= deqP[1]? enqP[1] - deqP[1]: (enqP[1]%nb + nb) - deqP[1]%nb; if(!enqEn[1] && cnt != nb) enqEn[1] <= True; if(!deqEn[1] && cnt != 0) deqEn[1] <= True; if(isValid(oldEnqP[1])) begin data[validValue(oldEnqP[1])] <= newData[1]; oldEnqP[1] <= Invalid; end endrule February 27, 2013http://csg.csail.mit.edu/6.375L07-17

N-element Conflict-free FIFO continued-2 method Action enq(t x) if(enqEn[0]); newData[0] <= x; oldEnqP[0] <= Valid (enqP[0]%nb); enqP[0] <= (enqP[0] + 1)%n2; enqEn[0] <= False; endmethod method Action deq if(deqEn[0]); deqP[0] <= (deqP[0] + 1)%n2; deqEn[0] <= False; endmethod method t first if(deqEn[0]); return data[deqP[0]%nb]; endmethod endmodule February 27, 2013http://csg.csail.mit.edu/6.375L07-18

Register File: normal and bypass Normal rf: {rd1, rd2} < wr; the effect of a register update can only be seen a cycle later, consequently, reads and writes are conflict-free Bypass rf: wr < {rd1, rd2}; in case of concurrent reads and write, check if rd1==wr or rd2==wr then pass the new value as the result and update the register file, otherwise the old value in the rf is read February 27, 2013http://csg.csail.mit.edu/6.375L07-19

Normal Register File module mkRFile(RFile); Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0)); method Action wr(Rindx rindx, Data data); if(rindx!=0) rfile[rindx] <= data; endmethod method Data rd1(Rindx rindx) = rfile[rindx]; method Data rd2(Rindx rindx) = rfile[rindx]; endmodule {rd1, rd2} < wr February 27, 2013http://csg.csail.mit.edu/6.375L07-20

Bypass Register File using EHR module mkBypassRFile(RFile); Vector#(32,EHR#(2, Data)) rfile <- replicateM(mkEHR(0)); method Action wr(Rindx rindx, Data data); if(rindex!==0) rfile[rindex][0] <= data; endmethod method Data rd1(Rindx rindx) = rfile[rindx][1]; method Data rd2(Rindx rindx) = rfile[rindx][1]; endmodule wr < {rd1, rd2} February 27, 2013http://csg.csail.mit.edu/6.375L07-21

Bypass Register File with external bypassing module mkBypassRFile(BypassRFile); RFile rf <- mkRFile; Fifo#(1, Tuple2#(RIndx, Data)) bypass <- mkBypassSFifo; rule move; begin rf.wr(bypass.first); bypass.deq end; endrule method Action wr(RIndx rindx, Data data); if(rindex!==0) bypass.enq(tuple2(rindx, data)); endmethod method Data rd1(RIndx rindx) = return (!bypass.search1(rindx)) ? rf.rd1(rindx) : bypass.read1(rindx); method Data rd2(RIndx rindx) = return (!bypass.search2(rindx)) ? rf.rd2(rindx) : bypass.read2(rindx); endmodule {rf.rd1, rf.rd2} < rf.wr wr < {rd1, rd2} February 27, 2013http://csg.csail.mit.edu/6.375L07-22

Extras may be good for a lab exercise February 27, L07-23

N-element searchable FIFO search CF {deq, enq} module mkCFSFifo#(function Bool isFound(t v, st k))(SFifo#(n, t, st)) provisos(Bits#(t, tSz), Add#(n, 1, n1), Log#(n1, sz), Add#(sz, 1, sz1)); Integer ni = valueOf(n); Bit#(sz1) nb = fromInteger(ni); Bit#(sz1) n2 = 2*nb; Vector#(n, Reg#(t)) data <- replicateM(mkRegU); Ehr#(2, Bit#(sz1)) enqP <- mkEhr(0); Ehr#(2, Bit#(sz1)) deqP <- mkEhr(0); Ehr#(2, Bool) enqEn <- mkEhr(True); Ehr#(2, Bool) deqEn <- mkEhr(False); Ehr#(2, t) newData <- mkEhr(?); Ehr#(2, Maybe#(Bit#(sz1))) oldEnqP <- mkEhr(Invalid); Ehr#(2, Maybe#(Bit#(sz1))) oldDeqP <- mkEhr(Invalid); Need a oldDeqP also to avoid scheduling constraints between deq and Search February 27, 2013http://csg.csail.mit.edu/6.375L07-24

N-element searchable FIFO search CF {deq, enq} continued-1 Bit#(sz1) cnt0 = enqP[0] >= deqP[0]? enqP[0] - deqP[0]: (enqP[0]%nb + nb) - deqP[0]%nb; Bit#(sz1) cnt1 = enqP[1] >= deqP[1]? enqP[1] - deqP[1]: (enqP[1]%nb + nb) - deqP[1]%nb; rule canonicalize; if(!enqEn[1] && cnt2 != nb) enqEn[1] <= True; if(!deqEn[1] && cnt2 != 0) deqEn[1] <= True; if(isValid(oldEnqP[1])) begin data[validValue(oldEnqP[1])] <= newData[1]; oldEnqP[1] <= Invalid; end if(isValid(oldDeqP[1])) begin deqP[0] <= validValue(oldDeqP[1]); oldDeqP[1]<=Invalid; end endrule February 27, 2013http://csg.csail.mit.edu/6.375L07-25

N-element searchable FIFO search CF {deq, enq} continued-2 method Action enq(t x) if(enqEn[0]); newData[0] <= x; oldEnqP[0] <= Valid (enqP[0]%nb); enqP[0] <= (enqP[0] + 1)%n2; enqEn[0] <= False; endmethod method Action deq if(deqEn[0]); oldDeqP[0] <= Valid ((deqP[0] + 1)%n2); deqEn[0] <= False; endmethod method t first if(deqEn[0]); return data[deqP[0]%nb]; endmethod February 27, 2013http://csg.csail.mit.edu/6.375L07-26

N-element searchable FIFO search CF {deq, enq} continued-3 method Bool search(st s); Bool ret = False; for(Bit#(sz1) i = 0; i < nb; i = i + 1) begin let ptr = (deqP[0] + i)%nb; if(isFound(data[ptr], s) && i < cnt0) ret = True; end return ret; endmethod endmodule February 27, 2013http://csg.csail.mit.edu/6.375L07-27

N-element searchable FIFO deq < search, deq < enq module mkPipelineSFifo#(function Bool isFound(t v, st k))(SFifo#(n, t, st)) provisos(Bits#(t, tSz), Add#(n, 1, n1), Log#(n1, sz), Add#(sz, 1, sz1), Bits#(st, stz)); Integer ni = valueOf(n); Bit#(sz1) nb = fromInteger(ni); Bit#(sz1) n2 = 2*nb; Vector#(n, Reg#(t)) data <- replicateM(mkRegU); Ehr#(2, Bit#(sz1)) enqP <- mkEhr(0); Ehr#(2, Bit#(sz1)) deqP <- mkEhr(0); This will make a good lab assignment February 27, 2013http://csg.csail.mit.edu/6.375L07-28

N-element searchable FIFO deq < search, deq < enq Bit#(sz1) cnt0 = enqP[0] >= deqP[0]? enqP[0] - deqP[0]: (enqP[0]%nb + nb) - deqP[0]%nb; Bit#(sz1) cnt1 = enqP[0] >= deqP[1]? enqP[0] - deqP[1]: (enqP[0]%nb + nb) - deqP[1]%nb; method Action enq(t x) if(cnt1 < nb); enqP[0] <= (enqP[0] + 1)%n2; data[enqP[0]%nb] <= x; endmethod method Action deq if(cnt0 != 0); deqP[0] <= (deqP[0] + 1)%n2; endmethod method t first if(cnt0 != 0); return data[deqP[0]%nb]; endmethod February 27, 2013http://csg.csail.mit.edu/6.375L07-29

N-element searchable FIFO deq < search, deq < enq method Bool search(st s); Bool ret = False; for(Bit#(sz1) i = 0; i < nb; i = i + 1) begin let ptr = (deqP[1] + i)%nb; if(isFound(data[ptr], s) && i < cnt1) ret = True; end return ret; endmethod endmodule February 27, 2013http://csg.csail.mit.edu/6.375L07-30