By Sherjeel Chughtai(FAST-NU) (Founder Of Telecom Pak Group)

Slides:



Advertisements
Similar presentations
GSC: Standardization Advancing Global Communications Evolution of TD-SCDMA China Communications Standards Association (CCSA) Chicago, May 29th to 2nd June,
Advertisements

Evolution road of 3GPP-LTE
Long Term Evolution LTE Long Term Evolution LTE Sanjeev Banzal Telecom Regulatory Authority of India Sanjeev Banzal Telecom Regulatory.
CELLULAR COMMUNICATIONS. LTE Data Rate Requirements And Targets to LTE  reduced delays, in terms of both connection establishment and transmission.
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
LTE-A Carrier Aggregation
An Introduction of 3GPP Long Term Evolution (LTE) Speaker : Tsung-Yin Lee.
Cellular Last Update Copyright Kenneth M. Chipps Ph.D. 1.
Wimax (802.16) A Road to Mobile Life.
Beyond 4 Generation 指導教授 : 黃光渠 教授 組員 :R 盧嘉翎 、 R 黃宥筌、 R 詹克暉.
IP Multimedia Subsystem (IMS) 江培文. Agenda Background IMS Definition IMS Architecture IMS Entities IMS-CS Interworking.
Moving to 3G faster and higher quality networks started supporting better services like video calling, video streaming, mobile gaming and fast Internet.
Aida BotonjićTieto1 LTE Aida Botonjić. Aida BotonjićTieto2 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High.
N AME OF THE T OPIC : Prepared by: Sayed Mahfuz Mahmud Istiyak Ahmed M.Sc. Engr.(CSE), Summer 2011 ID No: Department of CSE United International.
for WAN (WiMax). What is WiMax? Acronym for Worldwide Interoperability for Microwave Access It’s the IEEE standard, first introduced in 2001, for.
HSDPA Technology 1 Survey on High Speed Downlink Packet Access (HSDPA) Technology Chaoyi Chen April. 17, 2007.
Overview.  UMTS (Universal Mobile Telecommunication System) the third generation mobile communication systems.
TD-SCDMA.
LTE, LTE Advanced And Beyond 02/04/14 April 2014 Umar Iqbal Supervisor: Prof. Jyri Hämäläinen Instructor: InamUllah.
Jeremy Mayeres.  Cellphones  1G  2G  3G  4G/IMT-Advanced  LTE  WiMAX  4G Today  Future of 4G  Social/Ethical considerations.
Third-generation mobile communication started in ITU (International Telecommunication Union) at1980s. The evaluation criteria set the target data rates.
An Introduction of 3GPP Long Term Evolution (LTE)
SAMEER NETAM RAHUL GUPTA PAWAN KUMAR SINGH ONKAR BAGHEL OM PANKAJ EKKA Submitted By:
CSci5221: 3G/4G Cellular Network Architecture Overview 1 Cellular Voice/Data Architectures: A Primer Basics of Cellular Networks Survey of 2G/3G Cellular.
LTE – Long Term Evolution
Prepared by Oleg Getmanchuk Submitted to Prof. Dr. Eduard Heindl
1 Cellular communications Cellular communications BASIC TELECOMMUNICATIONS.
1. 2  What is MIMO?  Basic Concepts of MIMO  Forms of MIMO  Concept of Cooperative MIMO  What is a Relay?  Why Relay channels?  Types of Relays.
Capacity of Wireless Mesh Networks: Comparing Single- Radio, Dual-Radio, and Multi- Radio Networks By: Alan Applegate.
SMART ANTENNA SYSTEMS IN BWA Submitted by M. Venkateswararao.
Aida BotonjićTieto1 WCDMA/HSPA Aida Botonjić. Aida BotonjićTieto st generation Analogue speech NMT, AMPS, TACS 2 nd generation Digital speech.
5G MOBILE TECHNOLOGY.
4-G Cellular Systems. 2 What is 4-G? High data speed: 100 Mbps to 1Gbps anywhere, anytime Enable voice, data and streamed multimedia (enough speed for.
Design of Multi-RAT Virtualization Architectures in LTE-Advanced Wireless Network Location: 國立暨南國際大學電機系 Source: ICIC Express Letters, vol. 8, no. 5, May.
Ger man Aerospace Center Gothenburg, April, 2007 High Spectral Efficient and Flexible Next Generation Mobile Communications Simon Plass, Stephan.
4G 발표자 : 전지훈. What is 4G? (1/3)  The next complete evolution in wireless communications  SBI2K(Systems Beyond IMT 2000)  ITU(International Telecommunication.
All Rights Reserved, Copyright©2008, FUJITSU LIMITED. and FUJITSU LABORATORIES LIMITED. REV Technology Considerations for LTE-Advanced 3GPP TSG.
INTRODUCTION. Homogeneous Networks A homogeneous cellular system is a network of base stations in a planned layout and a collection of user terminals,
WCDMA AND WLAN FOR 3G AND BEYOND 通訊所 研二 楊川民.
CDMA X EV-DO by S.Vidhya. CDMA 2000 CDMA2000 (also known as C2K or IMT Multi ‑ Carrier (IMT ‑ MC)) is a family of 3G[1] mobile technology standards,
Dr. Ahmed El-MahdySpread Spectrum Communications (1) Performance of LTE uplink over frequency selective fading channel in impulsive noise environment (2)
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education.
HSPA/HSDPA (Beyond 3G) PRESENTED BY- NEHA ANAND NUPUR ANAND ROLL NO-50 ROLL NO-55.
Uplink scheduling in LTE Presented by Eng. Hany El-Ghaish Under supervision of Prof. Amany Sarhan Dr. Nada Elshnawy Presented by Eng. Hany El-Ghaish Under.
第四代行動通訊系統 (4G)-- Long Term Evolution Advanced (LTE Advanced)
Unit 4 Cellular Telephony
3G Wireless Systems. Route to 3G  1G: analog  2G : 1st digital mobile telephony  2.5G: transition from 2G to 3G  3G standard: IMT 2000.
Cellular Network Base stations transmit to and receive from mobiles at the assigned spectrum Multiple base stations use the same spectrum The service area.
TECHNICAL SEMINAR S V Suresh 08731A1254 By. 1 st GENERATION:  Introduced in 1980  Analog cellular mobile,Data speed 2.4kbps  1G mobiles- AMPS,NMT,TACS.
By Chaitanya Sarma & E.Prashant
LONG TERM EVOLUTION DANISH HASRAT (091042) DEEPAK SINGH (091043) GAURAV THAWANI (091052) NILESH SINGH (091079)
Approaches for Phasing of cdma2000 ® Evolution Dr. Byung K Yi Chair, TSG-C LG Electronics cdma2000 ® is the trademark for the technical nomenclature.
 First generation systems utilized frequency axis to separate users into different channels  Second generation systems added time axis to increase number.
Technology training (Session 6)
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 EPC核心網路系統設計 課程單元 04:LTE 通訊與協定 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學 電腦與通訊工程系)
LTE Long Term Evolution
244-6: Higher Generation Wireless Techniques and Networks
Hana Hani Omar Nabil Omar Hesham Youssef Essam Ahmed Ali Karim Ahmed
Cellular Wireless Networks
R : SRS Enhancements for LTE-A
LTE Long Term Evolution
Proposals for LTE-Advanced Technologies
Long Term Evolution (LTE)
4G and 5G: Present and Future of Mobile Network
EXECUTIVE SUMMARY CA combinations are divided into intra-band (contiguous and non-contiguous) and inter-band. Aggregated carriers can be adjacent or non-adjacent.
Antennas Topologies Directly connecting two duplexers together can affect each other’s filter characteristic, thereby losing the isolation that is needed.
WIRELESS AND MOBILE COMMUNICATION
Part 5 4th Generation Systems and Long Term Evolution
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 課程模組: 「LTE-Small Cell 核心網路架構及服務」 單元-A2:LTE-Small Cell的調變技術 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學.
Cellular Networks and Mobile Computing COMS , Spring 2012
Presentation transcript:

By Sherjeel Chughtai(FAST-NU) (Founder Of Telecom Pak Group) LTE Advanced By Sherjeel Chughtai(FAST-NU) (Founder Of Telecom Pak Group)

“Any sufficiently advanced technology is indistinguishable from magic “Any sufficiently advanced technology is indistinguishable from magic.” Arthur Clarke

Introduction LTE Advanced is a preliminary mobile communication standard, formally submitted as a candidate 4G system to ITU-T in late 2009, was approved into ITU, International Telecommunications Union, IMT-Advanced. It is standardized by the 3rd Generation Partnership Project (3GPP) as a major enhancement of the 3GPP Long Term Evolution (LTE) standard.

Spectrum Spectrum Efficiency LTE-Advanced aims to support downlink (8x8 antenna configuration) peak spectrum efficiency of 30 bps/Hz and uplink (4x4 antenna configuration) peak spectrum efficiency of 15 bps/Hz.

Spectrum flexibility LTE-Advanced shall operate in spectrum allocations of different sizes including wider spectrum allocations than those of LTE Release 8. The main focus for bandwidth solutions wider than 20MHz should be on consecutive spectrum. However aggregation of the spectrum for LTE-Advanced should take into account reasonable user equipment (UE) complexity. Frequency division duplex (FDD) and time division duplex(TDD) should be supported for existing paired and unpaired frequency bands, respectively.

Technology Components  Enhanced multiple antenna technologies LTE-Advanced extends the MIMO capabilities of LTE Release 8 to now supporting eight downlink antennas and four uplink antennas. In the downlink 8-by-x single user spatial multiplexing scenario of LTE-Advanced, up to two transport blocks can be transmitted to a scheduled UE in one sub frame per downlink component carrier. Each transport block is assigned its own modulation and coding scheme. For HARQ ACK/NACK feedback on uplink, one bit is used for each transport block.

Enhanced multiple antenna technologies With LTE-Advanced a scheduled UE may transmit up to two transport blocks. Each transport block has its own modulation and coding scheme (MCS level). Depending on the number of transmission layers, the modulation symbols associated with each of the transport blocks are mapped onto one or two layers according to the same principle as for LTE Release 8 downlink spatial multiplexing. The transmission rank can be adapted dynamically. Different codebooks are defined depending on the number of layers that are used. Further more different pre-coding is used depending on whether two or four transmit antennas are available. Also the number of bits used for the codebook index is different depending on the 2 and 4 transmit antenna case, respectively.

Enhanced uplink transmission scheme The uplink transmission scheme of LTE-Advanced has been maintained to a large extent, i.e. single carrier – frequency division multiple access (SC-FDMA) is used , which is a discrete fourier transformed (DFT) pre-coded orthogonal frequency division multiple access (OFDMA) scheme. The transmission of the physical uplink shared channel (PUSCH) uses DFT pre-coding in both MIMO and non-MIMO modes.

Control-data decoupling In LTE Release 8 a UE only uses physical uplink control channel (PUCCH) when it does not have any data to transmit on PUSCH. I.e. if a UE has data to transmit on PUSCH, it would multiplex the control information with data on PUSCH. This is not longer valid in LTE-Advanced, which means that simultaneous PUCCH and PUSCH transmission is possible in uplink direction.

Non-contiguous data transmission with single DFT The LTE Release 8 uplink scheme SC-FDMA differs from the LTE Release 8 downlink schemes, as an additional DFT is used in the transmission chain that transforms the modulation symbols into the frequency domain. In Release 8 localized SC-FDMA is allowed only, i.e. in uplink direction only consecutive subcarriers are transmitted. This is the essential advantage of the scheme, since it reduces the peak to average ratio of the transmitted signal and consequently allows more efficient power amplifier implementation. LTE-Advanced extends the uplink transmission scheme by allowing clustered SC- FDMA, i.e. the uplink transmission is not anymore restricted to the use of consecutive subcarriers, but clusters of subcarriers may be allocated . This allows uplink frequency selective scheduling and consequently will increase the link performance. However the peak to average ratio of the transmission signal will be increased compared with the localized scheme of LTE Release 8

Coordinated multiple point transmission and reception (CoMP) Coordinated multi-point (CoMP) transmission/reception is considered for LTE- Advanced as a tool to improve the coverage of high data rates, the cell-edge throughput and to increase system throughput . In a cellular deployment and specifically if frequencies are reused in each cell, other-cell interference traditionally degrades the system capacity. The target in CoMP is to turn the other cell interference into a useful signal specifically at the cell border. This requires dynamic coordination in the scheduling / transmission, including joint transmission, from multiple geographically separate points and also support for joint processing of received signals at multiple geographically separated points.

Coordinated multiple point transmission and reception (CoMP)

Spatial multiplexing Extension of LTE downlink spatial multiplexing to upto eight layers is considered. For the uplink spatial multiplying to upto four layers is considered.

Carrier aggregration

Relaying LTE-Advanced extends LTE Release 8 with support for relaying in order to enhance coverage and capacity. Further enhanced MBMS The MBMS has been enhanced in the LTE advanced.

RElays One solution to improve coverage is the use of fixed relays, pieces of infrastructure without a wired backhaul connection, that relay messages between the base station (BS) and mobile stations (MSs) through multi-hop communication. 

Relay TranSmission Techniques Analog repeater :The simplest strategy, which uses a combination of directional antennas and a power amplifier to repeat the transmit signal . Amplify-and-forward: relays apply linear transformation to the received signal . decode-and-forward: relays decode the signal then re-encode for transmission compress-and-forward

relaying Strategies One-way relay Two-way relay Shared relays

Issues in Lte ISSUES IN LTE ENERGY SPECTRUM UTILIZATION INTERFERENCE RESOURCE ALLOCATION COVERAGE AND CAPACITY SELF ORGANIZED NETWORKS HIGHER PEAK DATA RATE LARGER BANDWIDTH

Network Model

Technology Demonstrations In February 2007 NTT DoCoMo announced the completion of a 4G trial where it achieved a maximum packet transmission rate of approximately 5 Gbit/s in the downlink using 100 MHz frequency bandwidth to a mobile station moving at 10 km/h. In 2009, Rohde & Schwarz launched the CMW500 Wideband Communication Tester. In February 2011 at Mobile World Congress, Agilent Technologies demonstrated the industry's first test solutions for LTE-Advanced with both signal generation and signal analysis solutions. In 2011 May, Dialog Axiata PLC of Sri Lanka successfully demonstrated 4G LTE in Colombo and it became the first to reach 100mbps in South Asia. Currently, several main cities of Colombo are included in 4G testing phase

benefits Increased peak data rates (Gbit/s). Improved cell edge throughput. Improved spectrum efficiency. Improved network coverage. Increased energy efficiency. Spectrum flexibility and self-organizing network.

Terminologies Node B is a term used in UMTS equivalent to the BTS (base transceiver station) description used in GSM. Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular technology for networks based on the GSM standard. High-Speed Downlink Packet Access (HSDPA) is an enhanced 3G (third generation) mobile telephony communications protocol in the High- Speed Packet Access (HSPA) family, also dubbed 3.5G, 3G+ or turbo 3G, which allows networks based on Universal Mobile Telecommunications System (UMTS) to have higher data transfer speeds and capacity

Terminologies Multiple-input and multiple-output, or MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance. UE: User equipment Femto Cells: a femto cell is a small cellular base station, typically designed for use in a home or small business.

Terminologies HSPA+, also known as Evolved High-Speed Packet Access is a wireless broadband standard defined in 3GPP release 7 and above. System Architecture Evolution (aka SAE) is the core network architecture of 3GPP's LTE wireless communication standard.

Terminologies Orthogonal Frequency-Division Multiple Access (OFDMA) is a multi-user version of the popular Orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users.

Terminlogies A macrocell is a cell in a mobile phone network that provides radio coverage served by a high power cellular base station (tower). Multimedia Broadcast and Multicast Services (MBMS) is a broadcasting service offered via existing GSM and UMTS cellular networks

ConcLusion LTE Advanced benefits is the ability to take advantage of advanced topology networks; optimized heterogeneous networks with a mix of macros with low power nodes such as picocells, femto cells and new relay nodes. LTE Advanced further improves the capacity and coverage, and ensures user fairness. LTE Advanced also introduces multicarrier to be able to use ultra wide bandwidth.

Telecom pak http://www.facebook.com/pages/Telecom- Pak/167884679914443 http://www.linkedin.com/groups/Telecom- Pak-3672295?mostPopular=&gid=3672295

The end