A Beautiful Game John C. Sparks AFRL/WS (937) 255-4782 Wright-Patterson Educational Outreach The Air Force Research Laboratory.

Slides:



Advertisements
Similar presentations
9.1 Strictly Determined Games Game theory is a relatively new branch of mathematics designed to help people who are in conflict situations determine the.
Advertisements

GAME THEORY.
Nash’s Theorem Theorem (Nash, 1951): Every finite game (finite number of players, finite number of pure strategies) has at least one mixed-strategy Nash.
Module 4 Game Theory To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides created by Jeff Heyl.
Game Theory Assignment For all of these games, P1 chooses between the columns, and P2 chooses between the rows.
Game Theory S-1.
15 THEORY OF GAMES CHAPTER.
APPENDIX An Alternative View of the Payoff Matrix n Assume total maximum profits of all oligopolists is constant at 200 units. n Alternative policies.
Simultaneous- Move Games with Mixed Strategies Zero-sum Games.
Two-Player Zero-Sum Games
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
1 Chapter 14 – Game Theory 14.1 Nash Equilibrium 14.2 Repeated Prisoners’ Dilemma 14.3 Sequential-Move Games and Strategic Moves.
1 Chapter 4: Minimax Equilibrium in Zero Sum Game SCIT1003 Chapter 4: Minimax Equilibrium in Zero Sum Game Prof. Tsang.
An Introduction to... Evolutionary Game Theory
Eponine Lupo.  Questions from last time  3 player games  Games larger than 2x2—rock, paper, scissors  Review/explain Nash Equilibrium  Nash Equilibrium.
MIT and James Orlin © Game Theory 2-person 0-sum (or constant sum) game theory 2-person game theory (e.g., prisoner’s dilemma)
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Study Group Randomized Algorithms 21 st June 03. Topics Covered Game Tree Evaluation –its expected run time is better than the worst- case complexity.
Game theory.
Game Theory, Part 1 Game theory applies to more than just games. Corporations use it to influence business decisions, and militaries use it to guide their.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 15 Game Theory.
Game Theory. “If you don’t think the math matters, then you don’t know the right math.” Chris Ferguson 2002 World Series of Poker Champion.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Zero-Sum Games (follow-up)
9.2 Mixed Strategies Two players, Robert and Carol, play a game with payoff matrix (to Robert): Is the game strictly determined? Why? Robert has strategy:
Network Theory and Dynamic Systems Game Theory: Mixed Strategies
9.4 Linear programming and m x n Games: Simplex Method and the Dual Problem In this section, the process of solving 2 x 2 matrix games will be generalized.
Part 3: The Minimax Theorem
Games of pure conflict two person constant sum. Two-person constant sum game Sometimes called zero-sum game. The sum of the players’ payoffs is the same,
An Introduction to Game Theory Part III: Strictly Competitive Games Bernhard Nebel.
Lectures in Microeconomics-Charles W. Upton Minimax Strategies.
UNIT II: The Basic Theory Zero-sum Games Nonzero-sum Games Nash Equilibrium: Properties and Problems Bargaining Games Bargaining and Negotiation Review.
Games of Chance Introduction to Artificial Intelligence COS302 Michael L. Littman Fall 2001.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 68 Chapter 9 The Theory of Games.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna S-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Supplement 1.
Game Theory.
Minimax Strategies. Everyone who has studied a game like poker knows the importance of mixing strategies. –With a bad hand, you often fold –But you must.
Game Theory Statistics 802. Lecture Agenda Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for.
Minimax strategies, Nash equilibria, correlated equilibria Vincent Conitzer
Game Theory.
Chapter 12 & Module E Decision Theory & Game Theory.
Game Playing.
To accompany Quantitative Analysis for Management,9e by Render/Stair/Hanna M4-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Module 4 Game.
Game Theory Warin Chotekorakul MD 1/2004. Introduction A game is a contest involving to or more players, each of whom wants to win. Game theory is the.
9  Markov Chains  Regular Markov Chains  Absorbing Markov Chains  Game Theory and Strictly Determined Games  Games with Mixed Strategies Markov Chains.
The repeated games with lack of information on one side Now we focus on.
Game Theory Part 2: Zero Sum Games. Zero Sum Games The following matrix defines a zero-sum game. Notice the sum of the payoffs to each player, at every.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
The Science of Networks 6.1 Today’s topics Game Theory Normal-form games Dominating strategies Nash equilibria Acknowledgements Vincent Conitzer, Michael.
Game Theory, Part 2 Consider again the game that Sol and Tina were playing, but with a different payoff matrix: H T Tina H T Sol.
1 1 Slide © 2006 Thomson South-Western. All Rights Reserved. Slides prepared by JOHN LOUCKS St. Edward’s University.
When dealing with a model, we use the letter  for the mean. We write or, more often, replacing p by, Instead of , we can also write E(X ). ( Think of.
Part 3 Linear Programming
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Game Theory Optimal Strategies Formulated in Conflict MGMT E-5070.
Lecture 12. Game theory So far we discussed: roulette and blackjack Roulette: – Outcomes completely independent and random – Very little strategy (even.
1. 2 Some details on the Simplex Method approach 2x2 games 2xn and mx2 games Recall: First try pure strategies. If there are no saddle points use mixed.
1. 2 You should know by now… u The security level of a strategy for a player is the minimum payoff regardless of what strategy his opponent uses. u A.
Game tree search Thanks to Andrew Moore and Faheim Bacchus for slides!
1 a1a1 A1A1 a2a2 a3a3 A2A Mixed Strategies When there is no saddle point: We’ll think of playing the game repeatedly. We continue to assume that.
Statistics Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for Windows software Modeling.
Games of pure conflict two-person constant sum games.
GAME THEORY Day 5. Minimax and Maximin Step 1. Write down the minimum entry in each row. Which one is the largest? Maximin Step 2. Write down the maximum.
9.2 Mixed Strategy Games In this section, we look at non-strictly determined games. For these type of games the payoff matrix has no saddle points.
Game Theory [geym theer-ee] : a mathematical theory that deals with the general features of competitive situations in a formal abstract way.
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Chapter 6 Game Theory (Module 4) 1.
Game Theory.
Lecture 20 Linear Program Duality
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Presentation transcript:

A Beautiful Game John C. Sparks AFRL/WS (937) Wright-Patterson Educational Outreach The Air Force Research Laboratory (AFRL)

How Does Tic-Tac-Toe Differ From Pitching Pennies?

“Stone-Scissors-Paper”: An Old Children’s Game u Stone breaks scissors u Scissors cuts paper u Paper covers stone SCP S C P Player 2 Free-Will Choice Player 1 Free-Will Choice The above is called a game matrix. Payoffs are shown in the body of the matrix. Positive quantities are advantageous to the row player (Player 1) and negative quantities are advantageous to the column player (Player 2). Rules of Engagement

Some “Game-Theory” Definitions u Two-Person Game: A game where only two people are playing against each other è This is the only type of game that we will study in this class u Game Matrix: A matrix representation of all possible moves by either player and the associated payoffs u Zero-Sum Game: A game where all the loss incurred by one player becomes the gain of the second player and visa-versa u Most Conservative Strategy: An approach to game theory where players strive to minimize their losses u Optimal Strategy: A strategy, when employed, that guarantees minimal losses u Value of a Game: The average payoff (loss or gain) when the optimal strategy is employed u Fair Game: A game where the payoff is zero

Most Conservative Strategy: Leading to Strictly Determined Game Player 1 will want to stick to Row 3 in order to minimize loses. Player 2 will want to stick to Column 2 in order to minimize loses Player 2: 4 Choices Player 1: 4 Choices Since the most conservative strategy reduces to a single best move for both players, we call this game a Strictly Determined Game. The optimal strategy is for Player 1 to always play Row 3 and Player 2 to always play Row 4. The game has a payoff of -1 and is unfair to Player 2.

To Cheat or not to Cheat: A Strictly Determined IRS Game IRS Audits Taxpayer Cheats YesNo Yes No-2000 IRS Audits Taxpayer Cheats YesNo Yes No-2000 In this game, the taxpayer minimizes loses by always playing Row 1. Likewise, the IRS should always play Column 1. The value of the game is -$ and is unfair to the taxpayer.

The Idea of Row/Column Dominance

Non-Strictly Determined Game Requiring a Mixed Strategy Scenario (assuming repeated play): Player 1 chooses a No which invites a No from Player 2. Player 1 responds with a switch to Yes, to which Player 2 answers with Yes, to which Player 1 answers with No, etc., etc., etc. The point is that each player can always defeat the other player’s next best play. This creates a loop of strikes and counterstrikes. YesNo Yes No P2 P1

The Idea Behind Mixed Strategy Randomly mix the two choices--Row 1 or Row 2, Column 1 or Column 2-- such that the expected payoff remains constant (assuming repeated play) over the long run, no matter what the other player does. Basically, we are minimizing our surprises and adopting a Most Conservative Strategy. Col 1Col 2 Row Row P2 P1

What a Most Conservative Mixed Strategy Looks Like Col 1Col 2 Row Row P2 P1 p 1-p q1-q Player 1 chooses p so that the payoff (expected value) remains constant no matter what Player 2 does. Likewise, Player 2 adopts the same strategy and chooses q to make it so. So, how do we choose p and q?

Most Conservative Mixed Strategy: Choosing p and q For the Row Player: Payoff against Col 1 is -50p + 30(1-p) Payoff against Col 2 is 40p - 20(1-p) Now equate the two Payoffs -50p + 30(1-p) = 40p - 20(1-p) Solve for the p that makes it so. p=5/14 Interpretation: Row Player should randomly play Row 1 and Row 2 per the Mixed Strategy (5/14, 9/14) in order to insure a long-term constant payoff. For the Column Player: Payoff against Row 1 is -50q + 40(1-q) Payoff against Row 2 is 30q - 20(1-q) Now equate the two Payoffs -50q + 40(1-q) = 30q - 20(1-q) Solve for the q that makes it so. q=3/7 Interpretation: Column Player should randomly play Col 1 and Col 2 per the Mixed Strategy (3/7, 4/7) in order to insure a long-term constant payoff.

Most Conservative Mixed Strategy: Minimax Theorem Row Player mixes per the strategy (p=5/14,1-p=9/14) Payoff against Col 1 is -50p + 30(1-p) = 20/14= Payoff against Col 2 is 40p - 20(1-p) =20/14= Column Player mixes per the strategy (q=3/7, 1-q=4/7) Payoff against Row 1 is -50q + 40(1-q) =10/7= Payoff against Row 2 is 30q - 20(1-q) =10/7= Notice that the average payoff (expected value) identically reduces to when both players adopt a Most Conservative Mixed Strategy (Minimax Theorem). The game value is unfair to column player! Note: If one player deviates from the Most Conservative Mixed Strategy, the payoff still remains constant as long as the other player maintains a Most Conservative Mixed Strategy. However, the first player is now in a more vulnerable position.

Problem Utilizing all Elementary Game Theory Techniques Stage 1: Using the idea of dominance to reduce the size of the game Stage 2: Finding the Most Conservative Mixed Strategy, value, and fairness p 1-p q1-q Equate row expected values against remaining columns to obtain p=1/2 Equate column expected values against remaining rows to obtain q=5/8 Most Conservative Mixed Strategy Row: (1/2, 1/2, 0) Column: (5/8, 0, 3/8) Value is 0.50 Unfair to Column Player