Chiral Configurations Designating the Configuration of Chiral Centers.

Slides:



Advertisements
Similar presentations
Handout #6, 5.12 Spring 2003, 2/28/03 Stereochemistry stereochemistry: study of the spatial characteristics of a molecule stereocenter: atom bonded to.
Advertisements

3-dimensional Aspects of Tetrahedral Atoms
Unit 3 Stereochemistry.  Chirality and Stereoisomers  Configuration vs. Conformation  (R) and (S) Configurations  Optical Activity  Fischer Projections.
STEREOCHEMISTRY Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , 7.5.
Stereoisomer Descriptor.
Chapter 7. Stereochemistry.
STEREOCHEMISTRY By Puan Azduwin Khasri 8 th November 2012 By Puan Azduwin Khasri 8 th November 2012.
Chapter 5: Stereoisomerism
Unit 3 – Stereochemistry
Organic Chemistry Stereochemistry. Isomers compounds with the same molecular formula but not identical structures.
The study of the three dimensional structure of molecules.
1 Stereochemistry Prof. Dr. Harno Dwi Pranowo Austrian-Indonesian Center for Computational Chemistry Chemistry Department, FMIPA UGM.
Definitions o Stereochemistry refers to the 3-dimensional properties and reactions of molecules. o It has its own language and terms that need to be learned.
Bio Organic Chemistry Stereochemistry. Review of Isomers.
William H. Brown Christopher S. Foote Brent L. Iverson
Chapter 6 Stereochemistry.
Stereochemistry.
3 3-1 Organic Chemistry William H. Brown & Christopher S. Foote.
Stereochemistry Stereoisomerism.
Chapter 4: Stereochemistry. Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C 7 H 16 : 2-methylhexame.
Stereochemistry The arrangement of atoms in space By: Dr. Manal F. Abou Taleb Organic Chemistry, 5 th Edition L. G. Wade, Jr. chapter 5.
1 C: formic acid, methanoic acid 2 C’s: acetic acid, ethanoic acid 3 C’s: propionic acid, propanoic acid 4 C’s: butyric acid, butanoic acid Carboxyli c.
Stereochemistry & Chiral Molecules. Isomerism Isomers are different compounds with the same molecular formula 1) Constitutional isomers: their atoms are.
Chapter 5: Stereoisomerism Stereoisomers are compounds that have the same structural formula in terms of order of attachment, but differ in arrangements.
Chirality Chirality - the Handedness of Molecules.
CHEMISTRY 2500 Topic #3: Stereochemistry Spring 2011 Dr. Susan Lait.
Isomers Isomers: different compounds with the same molecular formula Constitutional isomers: isomers with a different connectivity Stereoisomers: isomers.
Stereochemistry 1. Stereoisomerism 2. Chirality
Stereochemistry Dr. Sheppard CHEM 2411 Spring 2015
Introduction to Organic Chemistry 2 ed William H. Brown
Stereochemistry Chiral Molecules
Chapter 5 Stereochemistry
Configurational Isomers
Stereochemistry Unit 8. Stereochemistry Stereochemistry – the study of compound structures in 3 dimensions Stereoisomers – compounds that differ only.
Chapter 5 Stereochemistry: Chiral Molecules 1.
Stereochemistry Constitutional Isomers: same molecular formula, different connectivity. Stereoisomers: same molecular formula, same connectivity, different.
Chemistry 2100 Chapter 15. Enantiomers Enantiomers: Enantiomers: Nonsuperposable mirror images. –As an example of a molecule that exists as a pair of.
Isomers are compounds which have the same molecular formula, but differ in the way the atoms are arranged. There are three types of isomers constitutional.
Chapter 5 Stereochemistry: Chiral Molecules
1 ISOMERISM. 2 Contents Isomers-Definitions Geometrical isomers Nomenclature for Geometrical isomers Optical Isomerism Nomenclature For Optical Isomers.
Stereochemistry. Stereochemistry: – The study of the three-dimensional structure of molecules Structural (constitutional) isomers: – same molecular formula.
Chiral Molecules Chapter 5.
Stereochemistry 240 Chem Chapter 5 1. Isomerism Isomers are different compounds that have the same molecular formula.
© 2016 Pearson Education, Inc. Isomers: The Arrangement of Atoms in Space Paula Yurkanis Bruice University of California, Santa Barbara Chapter 4.
Stereochemistry at Tetrahedral Centers. Chapter 52 Isomerism: Constitutional Isomers and Stereoisomers – Stereoisomers are isomers with the same molecular.
Isomers Are different compounds with the same molecular formula
Enantiomers: R and S Nomenclature. Enantiomers To distinguish between enantiomers, chemists use the R and S classification system.
Enantiomers rotate plane polarized light the same magnitude, but opposite directions. clockwise rotation – dextrarotatory (d or +) counterclockwise.
Chapter 15 Principles of Stereochemistry
The 3-D Shape of Molecules
Isomers: The Arrangement of Atoms in Space University of California,
Chapter 15 Chirality: The Handedness of Molecules
University of California,
Stereoisomerism and Chirality Unit 5.
By: Mdm Rohazita Bahari ERT 102 Organic Chemistry
Stereoisomerism and Chirality Unit 5.
Chapter 5 Stereochemistry: Chiral Molecules
Chapter 6 Principles of Stereochemistry ***Bring Your Model Kits to Class!***
Chapter 5 Stereochemistry: Chiral Molecules
Stereoisomerism and Chirality Unit 6.
240 Chem Stereochemistry Chapter 5.
Unit 3 – Stereochemistry
Chapter 4: Stereochemistry
240 Chem Stereochemistry Chapter 5.
Stereochemistry.
Nat. Sci. 104 – Organic Chem. Rosel I. Labrador Enantiomer and Diastereomers.
Isomers: The Arrangement of Atoms in Space University of California,
240 Chem Stereochemistry Chapter 5.
Presentation transcript:

Chiral Configurations Designating the Configuration of Chiral Centers

Chiral Configurations We have referred to the mirror-image configurations of enantiomers as "right- handed" and "left-handed" An early procedure assigned a D prefix to enantiomers chemically related to a right- handed reference compound and a L prefix to a similarly related left-handed group of enantiomers.

Chiral Configurations Although this notation is still applied to carbohydrates and amino acids, it required chemical transformations to establish group relationships, and proved to be ambiguous in its general application. A final solution to the vexing problem of configuration assignment was devised by three European chemists: R.S.Cahn, C. K. Ingold and V. Prelog C. K. IngoldV. PrelogC. K. IngoldV. Prelog. The resulting nomenclature system is sometimes called the CIP system or the R-S system.

The Sequence Rule for Assignment of Configurations to Chiral Centers Assign sequence priorities to the four substituents by looking at the atoms attached directly to the chiral center. Assign sequence priorities to the four substituents by looking at the atoms attached directly to the chiral center. The higher the atomic number of the immediate substituent atom, the higher the priority. For example, H– < C– < N– < O– < Cl–. (Different isotopes of the same element are assigned a priority according to their atomic mass.) The higher the atomic number of the immediate substituent atom, the higher the priority. For example, H– < C– < N– < O– < Cl–. (Different isotopes of the same element are assigned a priority according to their atomic mass.)

If two substituents have the same immediate substituent atom, evaluate atoms progressively further away from the chiral center until a difference is found for example:. CH 3 –< C 2 H 5 –< ClCH 2 –< BrCH 2 –< CH 3 O–. If double or triple bonded groups are encountered as substituents, they are treated as an equivalent set of single-bonded atoms. For example, C 2 H 5 – < CH 2 =CH– < HC≡C–

Once the relative priorities of the four substituents have been determined, the chiral center must be viewed from the side opposite the lowest priority group

It is important to remember that there is no simple or obvious relationship between the R or S designation of a molecular configuration and the experimentally measured specific rotation of the compound it represents

Two or More Chiral Centers The Chinese shrub Ma Huang Ephedra vulgaris)) contains two physiologically active compounds ephedrine and pseudoephedrine Both compounds are stereoisomers of 2- methylamino-1-phenyl-1-propanol, and both are optically active, one being levorotatory and the other dextrorotatory.

Compounds Having Two or More Chiral Centers Ephedrine: this isomer may be referred to as (–)-ephedrine, m.p º C 41º, moderate water solubility. – = D [α] Pseudoephedrine this isomer may be referred to as (+)-pseudoephedrine m.p. 119 º C, [α] D = +52º, relatively insoluble in water

As a general rule, a structure having n chiral centers will have 2n possible combinations of these centers

Using the Fischer projection notation, the stereoisomers of 2-methylamino-1- phenylpropanol are drawn in the following manner Using the Fischer projection notation, the stereoisomers of 2-methylamino-1- phenylpropanol are drawn in the following manner

Diastereomers The usefulness of this notation to Fischer, in his carbohydrate studies, is evident in the following diagram.

Epimers The aldopentose structures are all diastereomers. A more selective term, epimer, is used to designate diastereomers that differ in configuration at only one chiral center.

Epimers ribose and arabinose are epimers at C-2 arabinose and lyxose are epimers at C-3 However, arabinose and xylose are not epimers, since their configurations differ at both C-2 and C-3.

Meso Compounds Meso compounds are achiral (optically inactive) diastereomers of chiral stereoisomers

.

The syn-anti nomenclature may be applied to acyclic compounds having more than two chiral centers, as illustrated by the example in the colored box. The stereogenic center nearest carbon #1 serves as a reference. At sites having two substituents, such as carbon #5, the terms refer to the relative orientation of the highest order substituent, as determined C.I.P. sequence rules. by the C.I.P. sequence rules