The Birth of Stars Chapter Twenty. Guiding Questions 1.Why do astronomers think that stars evolve? 2.What kind of matter exists in the spaces between.

Slides:



Advertisements
Similar presentations
Star Formation Why is the sunset red? The stuff between the stars
Advertisements

Notes 30.2 Stellar Evolution
The Birth of Stars of the stars 18-1 How astronomers have pieced together the story of stellar evolution 18-2 What interstellar nebulae are and what.
The Birth of Stars Chapter Twenty. Interstellar gas and dust pervade the Galaxy Interstellar gas and dust, which make up the interstellar medium, are.
The Birth of Stars: Nebulae
Stellar Evolution up to the Main Sequence. Stellar Evolution Recall that at the start we made a point that all we can "see" of the stars is: Brightness.
Stellar Evolution Describe how a protostar becomes a star.
Stellar Evolution Chapters 12 and 13. Topics Humble beginnings –cloud –core –pre-main-sequence star Fusion –main sequence star –brown dwarf Life on the.
Protostars, nebulas and Brown dwarfs
Formation of Stars Physics 113 Goderya Chapter(s):11 Learning Outcomes:
Roger A. Freedman • William J. Kaufmann III
The Interstellar Medium (ISM): The Birth of Stars.
Chapter 19.
Stellar Birth and Stellar Structure Dense “cold” clouds in the Interstellar Medium, or the ISM 75% hydrogen 25% helium and trace amounts of : carbon, oxygen,
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 11 The Interstellar Medium.
The Formation and Structure of Stars
The Formation and Structure of Stars
The Formation of Stars Chapter 11. The last chapter introduced you to the gas and dust between the stars. Here you will begin putting together observations.
February 14, 2006 Astronomy Chapter 20: The Birth of Stars and the Discovery of Planets Outside the Solar System.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Chapter 11 The Lives of Stars. What do you think? Where do stars come from? Do stars with greater or lesser mass last longer?
1 Concept Map for Star Formation accretion disk bipolar jet birth line cloud-cloud collision cocoon cold gas disturbance dust grains fragmentation free.
STAR BIRTH. Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars.
The Birth of Stars -part I Chapter Twenty. Announcements I need from you a LIST on questions every end of the class near the door so I can KNOW what you.
Chapter 19 Star Formation (Birth) Chapter 20 Stellar Evolution (Life) Chapter 21 Stellar Explosions (Death) Few issues in astronomy are more basic than.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Star Formation Processes in Stellar Formation Sequence of Events Role of Mass in Stellar Formation Observational Evidence New Theories.
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-33.
The Formation and Structure of Stars Chapter 11. The last chapter introduced you to the gas and dust between the stars that are raw material for new stars.
Star Formation. Introduction Star-Forming Regions The Formation of Stars Like the Sun Stars of Other Masses Observations of Brown Dwarfs Observations.
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Unit 5: Sun and Star formation part 2. The Life Cycle of Stars Dense, dark clouds, possibly forming stars in the future Young stars, still in their birth.
A105 Stars and Galaxies  This week’s units: 60, 61, 62, 4  News Quiz Today  Star Clusters homework due Thursday  2nd Exam on Thursday, Nov. 2 Today’s.
Stellar Evolution: The Life Cycle of Stars Dense, dark clouds, possibly forming stars in the future Young stars, still in their birth nebulae Aging supergiant.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
The Formation and Structure of Stars
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
1 II-8 Stellar Evolution (Main Ref.: Lecture notes; Parts of FK Sec. 16-1,2, Ch 18, 19, 20; CD photos shown in class) II-8a. Introduction (Main Ref.: Lecture.
Star Processes and Formation. The Interstellar Medium (ISM)
ASTR 113 – 003 Spring 2006 Lecture 04 Feb. 15, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-39) Introduction To Modern Astronomy.
Star Formation Why is the sunset red? The stuff between the stars
1 HNRT Astrobiology Chapter 11 Section 1 The Life Cycle of Stars Presented by Dr. Harold Geller.
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe 30.2 Stellar Evolution.
A nebula is an interstellar cloud of dust, hydrogen gas and plasma. It is the first stage of a star's cycle. dusthydrogenplasmastar.
Chapter 11 The Interstellar Medium
Please press “1” to test your transmitter
Chapter 11 The Interstellar Medium
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Astronomy 2 Overview of the Universe Spring Lectures on Star Formation.
Universe Tenth Edition
The Formation of Stars. I. Making Stars from the Interstellar Medium A. Star Birth in Giant Molecular Clouds B. Heating By Contraction C. Protostars D.
H205 Cosmic Origins  Today: The Origin of Stars  Begin EP 6  Tuesday Evening: John Mather  7:30 Whittenberger APOD.
BEYOND OUR SOLAR SYSTEM CHAPTER 25 Part II. INTERSTELLAR MATTER NEBULA BRIGHT NEBULAE EMISSION NEBULA REFLECTION NEBULA SUPERNOVA REMANTS DARK NEBULAE.
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars form? What.
Star Formation. Chapter 19 Not on this Exam – On the Next Exam!
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Objectives Classifying Stars Star Formation The Main-Sequence Stage Leaving.
HNRT Astrobiology Chapter 11
18. Stellar Birth Stellar observations & theories aid understanding
The Interstellar Medium and Star Formation
The Interstellar Medium and Star Formation
The Formation and Structure of Stars
PSCI 1414 General Astronomy
Star Formation.
WHERE STARS ARE BORN.
The Birth of Stars.
Announcements Observing sheets due today (you can hand them in to me).
The ISM and Stellar Birth
Nebula By: Mckayla Morrison.
Presentation transcript:

The Birth of Stars Chapter Twenty

Guiding Questions 1.Why do astronomers think that stars evolve? 2.What kind of matter exists in the spaces between the stars? 3.In what kind of nebulae do new stars form? 4.What steps are involved in forming a star like the Sun? 5.When a star forms, why does it end up with only a fraction of the available matter? 6.What do star clusters tell us about the formation of stars? 7.Where in the Galaxy does star formation take place? 8.How can the death of one star trigger the birth of many other stars?

Understanding how stars evolve requires both observation and ideas from physics Because stars shine by thermonuclear reactions, they have a finite life span The theory of stellar evolution describes how stars form and change during that life spa

Interstellar gas and dust pervade the Galaxy Interstellar gas and dust, which make up the interstellar medium, are concentrated in the disk of the Galaxy Clouds within the interstellar medium are called nebulae Dark nebulae are so dense that they are opaque They appear as dark blots against a background of distant stars Emission nebulae, or H II regions, are glowing, ionized clouds of gas Emission nebulae are powered by ultraviolet light that they absorb from nearby hot stars Reflection nebulae are produced when starlight is reflected from dust grains in the interstellar medium, producing a characteristic bluish glow

Protostars form in cold, dark nebulae Star formation begins in dense, cold nebulae, where gravitational attraction causes a clump of material to condense into a protostar As a protostar grows by the gravitational accretion of gases, Kelvin- Helmholtz contraction causes it to heat and begin glowing

Protostars evolve into main-sequence stars A protostar’s relatively low temperature and high luminosity place it in the upper right region on an H-R diagram Further evolution of a protostar causes it to move toward the main sequence on the H-R diagram When its core temperatures become high enough to ignite steady hydrogen burning, it becomes a main sequence star

The more massive the protostar, the more rapidly it evolves

During the birth process, stars both gain and lose mass In the final stages of pre–main-sequence contraction, when thermonuclear reactions are about to begin in its core, a protostar may eject large amounts of gas into space Low-mass stars that vigorously eject gas are called T Tauri stars

A circumstellar accretion disk provides material that a young star ejects as jets

Clumps of glowing gas called Herbig-Haro objects are sometimes found along these jets and at their ends

Young star clusters give insight into star formation and evolution Newborn stars may form an open or galactic cluster Stars are held together in such a cluster by gravity Occasionally a star moving more rapidly than average will escape, or “evaporate,” from such a cluster A stellar association is a group of newborn stars that are moving apart so rapidly that their gravitational attraction for one another cannot pull them into orbit about one another

Star birth can begin in giant molecular clouds The spiral arms of our Galaxy are laced with giant molecular clouds, immense nebulae so cold that their constituent atoms can form into molecules

Star-forming regions appear when a giant molecular cloud is compressed This can be caused by the cloud’s passage through one of the spiral arms of our Galaxy, by a supernova explosion, or by other mechanisms

O and B Stars and Their Relation to H II Regions The most massive protostars to form out of a dark nebula rapidly become main sequence O and B stars They emit strong ultraviolet radiation that ionizes hydrogen in the surrounding cloud, thus creating the reddish emission nebulae called H II regions Ultraviolet radiation and stellar winds from the O and B stars at the core of an H II region create shock waves that move outward through the gas cloud, compressing the gas and triggering the formation of more protostars

Supernovae compress the interstellar medium and can trigger star birth

Key Words accretion Barnard object bipolar outflow Bok globule circumstellar accretion disk cluster (of stars) cocoon nebula dark nebula dust grains emission nebula evolutionary track fluorescence giant molecular cloud H II region Herbig-Haro object interstellar extinction interstellar medium interstellar reddening nebula (plural nebulae) nebulosity OB association open cluster protoplanetary disk (proplyd) protostar recombination reflection nebula stationary absorption lines stellar association stellar evolution supernova remnant supersonic T Tauri star