Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G292.0+1.8 Arxiv:1402.1633 Fumiyoshi Kamitukasa et al.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

Thermal X-ray in SNR Patrick Slane Zhang Ningxiao.
X-ray jets from B : A Middle-aged Pulsar's New Trick Q. Daniel Wang & Seth Johnson University of Massachusetts.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
European Space Astronomy Centre (ESAC) May 23, 2013.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
SUPERNOVA REMNANTS IN THE MAGELLANIC CLOUDS JOHN R. DICKEL UNIVERSITY OF NEW MEXICO AND ROSA MURPHY WILLIAMS COLUMBUS STATE UNIVERSITY Preliminary SNR.
Supernova Remnants in the ChASeM33 X-ray Survey of M33 Knox S. Long, William P. Blair, P. Frank Winkler, and the ChASeM33 team.
Rie Yoshii ( RIKEN/Tokyo Univ. of Science) すざくで観測した N103B Observation of N103B by Suzaku 〜 together with SNR and SNR (type Ia SNRs.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Tycho’s SNR – Obs ID 115 ds9 analysis by Matt P. & Leah S. PURPOSE: To use ds9 software to analyze the X-ray spectrum of the Tycho Supernova Remnant, determine.
A Million Second Chandra View of Cassiopeia A Una Hwang (NASA/GSFC, JHU) & J Martin Laming (NRL) Boston AAS 24 May 2011.
High Resolution X-ray Spectroscopy of SN 1006 X-ray Diagnostics of Astrophysical Plasmas Jacco Vink (SRON Nat. Inst. for Space Research) Cambridge Ma,
Supernova Remnants in the ChASeM33 X-ray Observations of M33 Knox Long, Bill Blair, Frank Winkler, Terry Gaetz, David Helfand, Jack Hughes, Kip Kuntz,
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
NGC 2110 Spectroscopy Dan Evans (Harvard), Julia Lee (Harvard), Jane Turner (UMBC/GSFC), Kim Weaver (GSFC), Herman Marshall (MIT)
December 16, 2002SNoRe Cambridge, MA1 Modeling Ejecta in Supernova Remnant X-Ray Spectra John P. Hughes Rutgers University  Cara Rakowski, Rutgers  Jessica.
Discovery of New SNR Candidates in the Galactic Center Region with ASCA and Chandra Atsushi Senda 1, Hiroshi Murakami 2, Aya Bamba 1, Shin-ichiro Takagi.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
May 6, 2003Constellation-X Workshop1 Spatial/Spectral Studies of Supernova Remnants with Chandra and XMM-Newton John P. Hughes Rutgers University.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
February 20, 2003Carnegie Symposum1 X-Ray Studies of Nucleosynthesis and Abundances in Supernova Remnants John P. Hughes Rutgers University.
NEI Modeling What do we have? What do we need? AtomDB workshop Hiroya Yamaguchi (CfA) Fe ion population in CIE (AtomDB v.2.0.2) Temperature.
X-Ray Observations of SN1006 Koyama, K. Kyoto University Palmieri et al (1972) Ballon : The first X-ray detection Winkler and Laird : OSO7 The spectrum.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
X-ray Studies of Supernova Remnants Una Hwang (NASA/GSFC, JHU) X-ray Astronomy School 2007 George Washington University.
The Ejecta Structure of the O-rich SNR Puppis A revealed by XMM-Newton Satoru K ATSUDA (Osaka U.), Koji M ORI (Miyazaki U.), Hiroshi T SUNEMI (Osaka U.),
Suzaku, XMM-Newton and Chandra Observations of the Central Region of M 31 Hiromitsu Takahashi (Hiroshima University, Japan) M. Kokubun, K. Makishima, A.
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
Kinematics of Young SNRs P. Frank Winkler, Middlebury College Conference on SNe, YITP, Kyoto 30 October 2013 Collaborators: Knox Long Steve Reynolds Rob.
New Scenario of Plasma Evolution in SNRs NEI describes the plasma evolution in standard SNRs (shell-like ): Ionizing Plasma (IP) CIE Colisional Ionization.
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
Classification of SN Progenitors Optical obs of SNe Classification is relatively straightforward - Spectrum (historically well established) - Luminosity.
Collaborators: Michael Muno (UCLA) Frederick Baganoff (MIT) Yoshitomo Maeda (ISAS) Mark Morris (UCLA) George Chartas (Penn State) Divas Sanwal (Penn State)
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Particle acceleration in Supernova Remnants from X-ray observations Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas.
High Energy Sky with Advancing Technology The Galactic Center View From Tenma--Suzaku Hakucho (1979)96 kg Tenma (1983) 216kg Ginga ( 1987 ) 420 kg ASCA.
Discovery of K  lines of neutral sulfur, argon, and calcium atoms from the Galactic Center Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo.
(1) Soft X-rays : Thermal Plasma (SN1006) (2) Hard X-rays: Non-thermal (SN 1006, RCW 86) (3) Mysterious 6.4 keV line (RCW 86, GC) Reports of the Suzaku.
Observations of supernova remnants Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
Search for Synchrotron X-ray Dominated SNRs with the ASCA Galactic Plane Survey Aya Bamba 1, Masaru Ueno 1, Katsuji Koyama 1, Shigeo Yamauchi 2, Ken Ebisawa.
X-ray signature of shock modification in SN 1006 Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era July , Boston, USA Marco Miceli.
Gilles Maurin – CEA Saclay - MODE10 - SNR session - November 2010 Geometry of acceleration in the bipolar remnant of SN1006 with XMM-Newton Gilles Maurin,
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
X-ray observation of the Cygnus Loop with Suzaku and XMM-Newton
Harvard-Smithsonian Center for Astrophysics Patrick Slane The Remnants of Supernovae.
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
14 may 2007Simbol-X workshop - Bologna1 44 Ti nucleosynthesis γ –ray lines with Simbol-X Matthieu Renaud Max-Planck-Institute für Kernphysik Heidelberg,
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
Boston 2009 Patrick Slane (CfA) SNRs and PWNe in the Chandra Era Observations of Pulsar Bowshock Nebulae Collaborators: B. M. Gaensler T. Temim J. D. Gelfand.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
The Ejecta distribution of the Cygnus Loop
Jesper Rasmussen (Univ. of Birmingham)
A large XMM-Newton project on SN 1006
Asami Hayato (RIKEN / Tokyo Univ. of Sci.)
A large XMM-Newton project on SN 1006
XMM-Newton Observation of the composite SNR G0. 9+0
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Suzaku Observation of Tycho’s Supernova Remnant
Presentation transcript:

Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.

G Distance 6 kpc (Gaensler et al. 2003) Age 2990±60 years (Winkler et al. 2009) Asymmetry, Complex morphology, solar abundance central filaments. O, Ne, Mg, Si, S, Ar, Fe, Core- collapse (Park et al ) Contain PSR J (Camilo et al. 2002) Progenitor mass of 30–40 M sun. (Gonzalez et al. 2003) Park et al. 2007

Gonzalez et al. 2003

Suzaku Observation Suzaku XIS, 2011 July (ObsID: , PI: K. Koyama) FOV 18′×18′

Fe Ar Ca

Discussion Chandra spectra from many selected regions of bright small spots are described by 1-VPSHOCK model with super-solar abundances (Park et al. 2004), while those from the faint outer-most shell are 1 or 2- VPSHOCK model with sub-solar to solar abundances (Gonzalez & Safi-Harb 2003; Lee et al. 2010). We discover Fe K-shell line at 6.6 keV in the eject plasma for the first time. The energy indicates that ionization state of Fe is around B-like. This medium ionization state is similar to another young CC SNR, Cas A, but is in contrast to nearly Ne-like states in young well known Type Ia SNRs, Tycho, Kepler, and SN1006.

Abundance of the ejecta for O, Ne, Mg, Si, S, Ar and Fe relative to Si together with those of the CC SN model in various progenitor masses (Woosley & Weaver1995). We see that the observed abundance pattern is globally in agreement with the model of 30–35 M sun.

we find marginal evidence of spatial variation of Fe in the ejecta. The north region is enhanced compared to that of the center region. Since the position of the neutron star (PWN) is off-set to southeast from the geometrical SNR center (Park et al. 2007), it would be conceivable that Fe from the core region would be ejected to the opposite northwest direction. Our observational result of the Fe variation is marginal to support this off-set effect due to large errors. To establish this kick-off scenario, we need higher quality observations.

The best-fit spectral parameters of the PWN, the photon index is 1.91±0.03, steeper than that of the pulsar (1.6–1.7, Hughes et al. 2001, 2003). Probably the index increases as the distance from the central pulsar increases (e.g. Slane et al. 2000). The PWN flux is 52% of the total flux (4–8 keV) from the whole SNR. This ratio is slightly smaller than 66%, determined Chandra (Hughes et al.2001). This difference may due possibly to the NXB and CXB subtraction, or other systematic cross errors including different data reduction processes between Suzaku and Chandra.

summary Confirm that the thermal X-ray emission from G consists of two type plasmas in CIE and NEI conditions. The NEI plasma includes K-shell line from B-like Fe, with super solar abundances for O, Ne, Mg, Si, S, Ar, and Fe. Therefore this plasma is likely the ejecta origin of the CC SNR. Using the abundance pattern of the ejecta, we confirm the progenitor mass to be 30–35M sun. The CIE plasma has nearly solar abundances for all the relevant elements, and hence is likely the CSM and ISM origin.