Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -

Slides:



Advertisements
Similar presentations
CHOW TEST AND DUMMY VARIABLE GROUP TEST
Advertisements

EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 7)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient (2010/2011.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
EC220 - Introduction to econometrics (review chapter)
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 7) Slideshow: weighted least squares and logarithmic regressions Original citation:
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Chapter 5: Dummy Variables. DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 We’ll now examine how you can include qualitative explanatory variables.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 5). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N and a dummy variable for the type of curriculum (occupational / regular).

SLOPE DUMMY VARIABLES 2 The specification of the model incorporates the assumption that the marginal cost per student is the same for occupational and regular schools. Hence the cost functions are parallel.

SLOPE DUMMY VARIABLES 3 However, this is not a realistic assumption. Occupational schools incur expenditure on training materials that is related to the number of students.

SLOPE DUMMY VARIABLES 4 Also, the staff-student ratio has to be higher in occupational schools because workshop groups cannot be, or at least should not be, as large as academic classes.

SLOPE DUMMY VARIABLES 5 Looking at the scatter diagram, you can see that the cost function for the occupational schools should be steeper, and that for the regular schools should be flatter.

SLOPE DUMMY VARIABLES 6 We will relax the assumption of the same marginal cost by introducing what is known as a slope dummy variable. This is NOCC, defined as the product of N and OCC. COST =  1  +   OCC +  2 N + NOCC + u

SLOPE DUMMY VARIABLES 7 In the case of a regular school, OCC is 0 and hence so also is NOCC. The model reduces to its basic components. COST =  1  +   OCC +  2 N + NOCC + u Regular schoolCOST =  1  +  2 N + u (OCC = NOCC = 0)

SLOPE DUMMY VARIABLES In the case of an occupational school, OCC is equal to 1 and NOCC is equal to N. The equation simplifies as shown. 8 COST =  1  +   OCC +  2 N + NOCC + u Regular schoolCOST =  1  +  2 N + u (OCC = NOCC = 0) Occupational schoolCOST = (  1  +   ) + (  2  + N + u (OCC = 1; NOCC = N)

SLOPE DUMMY VARIABLES The model now allows the marginal cost per student to be an amount greater than that in regular schools, as well as allowing the overhead costs to be different. 9 COST =  1  +   OCC +  2 N + NOCC + u Regular schoolCOST =  1  +  2 N + u (OCC = NOCC = 0) Occupational schoolCOST = (  1  +   ) + (  2  + N + u (OCC = 1; NOCC = N)

COST N  1 +  11 Occupational Regular  SLOPE DUMMY VARIABLES The diagram illustrates the model graphically. 10

SLOPE DUMMY VARIABLES Here are the data for the first ten schools. Note the weird way in which NOCC is defined. 11 School TypeCOST N OCC NOCC 1Occupational345, Occupational 537, Regular 170, Occupational Regular100, Regular 28, Regular 160, Occupational 45, Occupational 120, Occupational61,

. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons | SLOPE DUMMY VARIABLES Weird or not, the procedure works very well. Here is the regression output using the full sample of 74 schools. We will begin by interpreting the regression coefficients. 12

SLOPE DUMMY VARIABLES Here is the regression in equation form. 13 COST = 51,000 – 4,000  OCC + 152N + 284NOCC ^

SLOPE DUMMY VARIABLES Putting OCC, and hence NOCC, equal to 0, we get the cost function for regular schools. We estimate that their annual overhead costs are 51,000 yuan and their annual marginal cost per student is 152 yuan. 14 COST = 51,000 – 4,000  OCC + 152N + 284NOCC Regular schoolCOST= 51, N (OCC = NOCC = 0) ^ ^

SLOPE DUMMY VARIABLES Putting OCC equal to 1, and hence NOCC equal to N, we estimate that the annual overhead costs of the occupational schools are 47,000 yuan and the annual marginal cost per student is 436 yuan. 15 COST = 51,000 – 4,000  OCC + 152N + 284NOCC Regular schoolCOST= 51, N (OCC = NOCC = 0) Occupational schoolCOST= 51,000 – 4, N + 284N (OCC = 1; NOCC = N) = 47, N ^ ^ ^

SLOPE DUMMY VARIABLES You can see that the cost functions fit the data much better than before and that the real difference is in the marginal cost, not the overhead cost. 16

SLOPE DUMMY VARIABLES Now we can see why we had a nonsensical negative estimate of the overhead cost of a regular school in previous specifications. 17

SLOPE DUMMY VARIABLES The assumption of the same marginal cost led to an estimate of the marginal cost that was a compromise between the marginal costs of occupational and regular schools. 18

SLOPE DUMMY VARIABLES The cost function for regular schools was too steep and as a consequence the intercept was underestimated, actually becoming negative and indicating that something must be wrong with the specification of the model. 19

SLOPE DUMMY VARIABLES We can perform t tests as usual. The t statistic for the coefficient of NOCC is 3.76, so the marginal cost per student in an occupational school is significantly higher than that in a regular school. 20. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons |

SLOPE DUMMY VARIABLES The coefficient of OCC is now negative, suggesting that the overhead costs of occupational schools are actually lower than those of regular schools. 21. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons |

SLOPE DUMMY VARIABLES This is unlikely. However, the t statistic is only -0.09, so we do not reject the null hypothesis that the overhead costs of the two types of school are the same. 22. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = COST | Coef. Std. Err. t P>|t| [95% Conf. Interval] N | OCC | NOCC | _cons |

SLOPE DUMMY VARIABLES We can also perform an F test of the joint explanatory power of the dummy variables, comparing RSS when the dummy variables are included with RSS when they are not. 23. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The null hypothesis is that the coefficients of OCC and NOCC are both equal to 0. The alternative hypothesis is that one or both are nonzero. 24

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The improvement in the fit on adding the dummy variables is the reduction in RSS. 25

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The cost is 2 because 2 extra parameters, the coefficients of the dummy variables, have been estimated, and as a consequence the number of degrees of freedom remaining has been reduced from 72 to

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The first component of the denominator is RSS after the dummies have been added. 27

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The denominator is RSS after the dummies have been added, divided by the number of degrees of freedom remaining. This is 70 because there are 74 observations and 4 parameters have been estimated. 28

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 The F statistic is therefore The critical vale of F(2,70) at the 0.1 percent level is

SLOPE DUMMY VARIABLES. reg COST N OCC NOCC Source | SS df MS Number of obs = F( 3, 70) = Model | e e+11 Prob > F = Residual | e e+09 R-squared = Adj R-squared = Total | e e+10 Root MSE = reg COST N Source | SS df MS Number of obs = F( 1, 72) = Model | e e+11 Prob > F = Residual | e e+10 R-squared = Adj R-squared = Total | e e+10 Root MSE = 1.1e+05 Thus we conclude that at least one of the dummy variable coefficients is different from 0. We knew this already from the t tests, so in this case the F test does not actually add anything. 30

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 5.3 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics