R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.

Slides:



Advertisements
Similar presentations
The SNO+ Experiment: Overview and Status
Advertisements

Measurement of low level neutron fluxes: status and prospects John McMillan University of Sheffield.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Low Energy Neutrino Astrophysics
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Experimental Status of Geo-reactor Search with KamLAND Detector
Double Beta Decay With 20-ton Metal Loaded Scintillators A Detector for DUSEL? Frank Calaprice Princeton University Aldo Ianni LNGS.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
SNO+ Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
KamLAND and Geoneutrinos Sanshiro Enomoto KamLAND Collaboration RCNS, Tohoku University 1. Review of Previous Results 2. Recent Improvements (Preliminary)
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Geo Neutrino Detection at KamLAND F.Suekane RC S Tohoku University 5th Workshop on Applied Antineutrino Physics (AAP2009) Angra dos Reis, Brazil 20/03/2009.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Emanuela Meroni Univ. & INFN Milano NO-VE April 15-18, 2008 Borexino and Solar Neutrinos Emanuela Meroni Università di Milano & INFN On behalf of the Borexino.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
SYSTEMATICS (preliminary consideration) V. Sinev for Kurchatov Institute Neutrino group.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
Karsten Heeger, Univ. of WisconsinDNP2006, Nashville, October 28, 2006 A High-Precision Measurement of sin 2 2  13 with the Daya Bay Reactor Antineutrino.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Jeanne Wilson IoP HEPP 2013, Liverpool 8/4/2013 Non-Accelerator Neutrino Physics* *Excluding neutrino mass measurements Some ^
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Search for Sterile Neutrino Oscillations with MiniBooNE
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Detector R&D for European projects Liquid Scintillator: LENA ICFA Neutrino European Meeting Paris, January 8 – 10, 2014 Wladyslaw H. Trzaska.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Christian Buck, MPIK Heidelberg LowNu Reims, October 2009 Liquid scintillators.
Fast neutron flux measurement in CJPL
SoLid: Recent Results and Future Prospects
Simulation for DayaBay Detectors
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Irina Bavykina, MPI f. Physik
Davide Franco for the Borexino Collaboration Milano University & INFN
Design Requirements for Jinping Underground Neutrino Experiment
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
Presentation transcript:

R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München

Organic Liquid Scintillators high light yield fast fluorescence decay particle-dependent response good energy resolution time resolution of ns background discrimination solar, geo ‘s, 2  0 proton decay all handling of large volumes possible purification solubility of foreign atoms large target mass, self-shielding high radiopurity, low threshold doping of the target all solar ‘s 2  0, reactor ‘s target consists of Hydrogen and Carbon free protons high p/n ratio antineutrinos proton decay liquid scintillator organic → liquid-scintillator detectors are adapted for rare-event searches, such as low-energetic neutrinos, proton decay and 2  0 decay → detectors can be adjusted to the detection of individual particles

Upcoming liquid-scintillator detectors: SNO+/++ 1kt NOvA 30kt LENA, 50kt HanoHano, 10kt or more SuperNEMO LENS >200t Daya Bay, Angra …

Borexino – a running LS experiment 300t of PC, Ø 13m, 2200 phototubes light yield: 500 pe/MeV energy resolution: 1 MeV threshold: hardware: 40keV 14 C: ~200keV pulse shape discriminitation of ,  statistical at a level of ~10 -3 high-level radiopurity: e.g. U/Th contamination < g/g 7 Be ‘s already measured pep, CNO ‘s seem well feasible 210 Po  ‘ s 7 Be ‘ s

SNO+ SNO++ replacing the D 2 O inside the acrylic sphere with liquid scintillator (LAB) physics potential: solar ’s pep, CNO reactor ’s oscillation dip terrestrial ’s favourable S/B ratio ~500 SN events (10kpc) loading the scintillator with 0.1% Neodynium → kg 150 Nd: 2  3.3 MeV physics potential: large rates: spectral fit to 2 /0 signals predicted potential: masses down to meV

LENA a multi-purpose observatory solar neutrinos 5x Be e events per day sign of time-dependent fluctuations? pep (210ev/d), 8 13 C (360/a) → test MSW transition region CNO contribution to fusion Supernova neutrinos 2x10 4 ev for 8 different reaction channels → disentangle neutrino flavours, flux and spectral information mass hierarchy,  13, MSW terrestrial anti-neutrinos ~10 3 events per year relative crust-abundancies of U/Th favourable S/B conditions look for a georeactor of >2TW proton decay into K + favoured by SUSY,  4  yrs (90% C.L.) Wurm et al., PRD 75 (2007) , astro-ph/ Hochmuth et al., Astrop.Phys 27, 21, hep-ph/ T. Marrodán Undagoitia et al., PRD 72 (2005) _ Diffuse SN neutrinos 2-20 antineutrinos per year excellent background rejection: 1ev/yr spectroscopy possible: info on both SN rate (z<2) and SN models Neutrino/Beta Beams Indirect Dark Matter Search

Scintillator Components Solvent PC, PXE, LAB …target fp/p/n-ratios purification, addition of oilenergy transfer to fluor propagation of scint. light Wavelength Shifter (Fluor) PPO, bisMSB, PMP …signal decay times combinations possiblelarge Stoke‘s shifts no self-absorption Additions n/ catchers (Gd, In …)stability of the scintillator  candidates (Nd, …)absorption of scint. light all these properties have to be investigated …

TUM light yield attenuation length scattering length fluorescence time & spectra

Solvent Candidates LAB, C H density: 0.86 kg/l light yield: ~100% fluorescence decay:  ~ 6ns attenuation 430nm: ~20m PXE, C 16 H 18 density: 0.99 kg/l light yield: ~ ph/MeV fluorescence decay:  ~ 3ns attenuation 430 nm: ≤12m (mostly scattering) +80% Dodecane, C 12 H 26 density: ~0.80 kg/l light yield: ~ 85% fluorescence decay slower attenuation length increases! In terms of solvent transparency, a 30m diameter detector is feasible. effects and complexity of purification have to be considered.

PPO, C 15 H 11 NO primary fluor absorption band: nm emission band: nm bisMSB, C 24 H 22 secondary fluor absorption band: nm emission band: nm Possible Wavelength Shifters large detectors require Stoke‘s Shift to wavelength of 430 nm where scintillator is more transparent a combination of a primary and a secondary shifter can be used → might lead to self-absorption fluors with large Stoke‘s Shifts like PMP have to be tested other parameters like fluorescence time, solubility etc. have to be considered as well The Aim: A detailed MC study of light production and propagation in a large-volume detector like LENA.

Further R&D on liquid scintillators Intrinsic Purity of the Scintillator: Production, Handling, Transport Purification Methods, both Transparency and Radiopurity: Column-Chromotography (Silica Gel, Al 2 O 3 etc.), Distillation, Water-Purging … Scinitillation Light Production and Propagation: Wavelength-dependent emission, absorption and scattering of the light Experiments and MC simulations for energy & time resolution Investigation of New Materials: solvents: high transparency, short signal decay time … fluors: overlap of absorption with solvent emission, large Stoke‘s shifts (>430nm)

LENA design detector location: cavern or deep-sea overburden of >4000 m.w.e. for most purposes: far away from nuclear power plants upright posititon favourable for buoyant forces, assembly etc. detector dimensions adjusted to transparency of the scintillator 30% optical coverage light yield: >200 pe/MeV buffer shields the target from external radioactivity radiopurity as in Borexino (?) target volume 50kt of liquid scintillator h 100m, Ø 26m buffer volume solvent&quencher thickness: 2m muon veto panels of plastic scintillator nylon vessel steel tank ~ 13k phototubes water tank >5m n shielding active  veto (?) egg-shaped cavern h 120m, Ø 50m

R&D needs of the Detector Construction of the Cavern: maximum depth, shape, maximum size, infrastructure for scintillator, (liquid) gases … Materials of the Detector: treatment of the steel (inertness, low reflectivity), construction of nylon vessel, … Photo-Detection: PMTs or alternative light detectors, optimization of optical coverage (light concentrators …) Infrastructure of HV, Electronics

Liquid-Scintillator Detectors provide good energy resolution, particle identification and favourable background conditions at a relatively low price. Large-volume detectors like LENA will be multi- purpose observatories and will address a wide range of interesting questions comprising particle, astro-particle and geophysics. Purity and purification of materials, construction of large & deep underground caverns and optimization of photodetection are examples for possible synergies with other experiments (LAGUNA: Memphys, Glacier & Lena). Outlook