Genova, September 1 2004 Routes to Colloidal Gel Formation CCP2004 In collaboration with S. Bulderyev, E. La Nave, A. Moreno, S. Mossa, I. Saika-Voivod,

Slides:



Advertisements
Similar presentations
One liquid, two glasses. The anomalous dynamics in short ranged attractive colloids Francesco Sciortino Titolo.
Advertisements

Slow anomalous dynamics close to MCT higher order singularities. A numerical study of short-range attractive colloids. (and some additional comments) Francesco.
Gelation Routes in Colloidal Systems Emanuela Zaccarelli Dipartimento di Fisica & SOFT Complex Dynamics in Structured Systems Università La Sapienza, Roma.
Part I Part II Outline. Thermodynamics in the IS formalism Stillinger- Weber F(T)=-T S conf (, T) +f basin (,T) with f basin (e IS,T)= e IS +f vib (e.
Phase Separation of a Binary Mixture Brian Espino M.S. Defense Oct. 18, 2006.
Konstanz, September 2002 Potential Energy Landscape Equation of State Emilia La Nave, Francesco Sciortino, Piero Tartaglia (Roma) Stefano Mossa (Boston/Paris)
Multi-faceted nature of equilibrium self-association phenomena Karl F. Freed & Jacek Dudowicz James Franck Inst., U. Chicago Jack F. Douglas Polymers Div.,
APS March MeetingDallas, March 22, 2011 FACETING OF MULTICOMPONENT CHARGED ELASTIC SHELLS Rastko Sknepnek, Cheuk-Yui Leung, Liam C. Palmer Graziano Vernizzi,
Aging in short-ranged attractive colloids G. Foffi INFM, Universita’ “La Sapienza”, Roma.
1 Relaxation and Transport in Glass-Forming Liquids Motivation (longish) Democratic motion Conclusions G. Appignanesi, J.A. Rodríguez Fries, R.A. Montani.
Bad Gastein, January 2005 Gels and Strong Liquids In collaboration with S. Bulderyev,C. De Michele, E. La Nave, A. Moreno, I. Saika-Voivod, P. Tartaglia,
March ACS Chicago Francesco Sciortino Universita’ di Roma La Sapienza Gel-forming patchy colloids, and network glass formers: Thermodynamic and.
ADSORPTION ISOTHERMS discontinuous jumps: layering transitions some layering transitions coexistence pressure monolayer condensation bilayer condensation.
IV Workshop on Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials Pisa, September 2006 Francesco Sciortino Gel-forming patchy.
June Universite Montpellier II Francesco Sciortino Universita’ di Roma La Sapienza Aggregation, phase separation and arrest in low valence patchy.
The Marie Curie Research/Training Network on Dynamical Arrest Workshop Le Mans, November 19-22, 2005 Slow dynamics in the presence of attractive patchy.
Francesco Sciortino Dynamical Arrest of Soft Matter and Colloids Lugano April (MRTN-CT ) Tutorial: Recent developments in understanding.
Cluster Phases, Gels and Yukawa Glasses in charged colloid-polymer mixtures. 6th Liquid Matter Conference In collaboration with S. Mossa, P. Tartaglia,
Colloidal stabilization by nano-particle halos Ard Louis Dept. of Chemistry.
Conference on "Nucleation, Aggregation and Growth”, Bangalore January Francesco Sciortino Gel-forming patchy colloids and network glass formers:
Konstanz, September 2002 Potential Energy Landscape Equation of State Emilia La Nave, Francesco Sciortino, Piero Tartaglia (Roma) Stefano Mossa (Boston/Paris)
Duesseldorf Feb 2004 Duesseldorf February Potential Energy Landscape Description of Supercooled Liquids and Glasses Luca Angelani, Stefano Mossa,
Dynamics of a Colloidal Glass During Stress-Mediated Structural Arrest (“Relaxation in Reverse”) Dynamics of a Colloidal Glass During Stress-Mediated Structural.
Francesco Sciortino Universita’ di Roma La Sapienza October ISMC Aachen Patchy colloidal particles: the role of the valence in the formation of.
Critical Scaling at the Jamming Transition Peter Olsson, Umeå University Stephen Teitel, University of Rochester Supported by: US Department of Energy.
Cluster Phases, Gels and Yukawa Glasses in charged colloid-polymer mixtures. titolo Francesco Sciortino Amsterdam, November 2005, AMOLF.
Orleans July 2004 Potential Energy Landscape in Models for Liquids Networks in physics and biology In collaboration with E. La Nave, A. Moreno, I. Saika-Voivod,
Scaled Nucleation in Lennard-Jones System Barbara Hale and Tom Mahler Physics Department Missouri University of Science & Technology Jerry Kiefer Physics.
Playing with Short Range Attractions and Long Range Repulsions Stefano Mossa, Francesco Sciortino, Piero Tartaglia, Emanuela Zaccarelli A new route to.
Patchy Colloids, Proteins and Network Forming Liquids: Analogies and new insights from computer simulations Lyon - CECAM - June Dynamics in patchy.
Physical Gels and strong liquids 5th International Discussion Meeting on Relaxations in Complex Systems New results, Directions and Opportunities Francesco.
STATISTICAL PROPERTIES OF THE LANDSCAPE OF A SIMPLE STRONG LIQUID MODEL …. AND SOMETHING ELSE. E. La Nave, P. Tartaglia, E. Zaccarelli (Roma ) I. Saika-Voivod.
Glass transition in short ranged attractive colloids: theory, application and perspective Giuseppe Foffi Universita’ “La Sapienza”, Roma INFM, Roma Utrecht.
Francesco Sciortino Simple models of competitive interactions in soft-matter: re-entrant liquids and gels on heating
Jamming Peter Olsson, Umeå University Stephen Teitel, University of Rochester Supported by: US Department of Energy Swedish High Performance Computing.
SimBioMa, Konstanz 2008 Francesco Sciortino Universita’ di Roma La Sapienza “Models for colloidal gelation” Introduzione.
Dispersed Systems FDSC Version. Goals Scales and Types of Structure in Food Surface Tension Curved Surfaces Surface Active Materials Charged Surfaces.
Statistical mechanics of random packings: from Kepler and Bernal to Edwards and Coniglio Hernan A. Makse Levich Institute and Physics Department City College.
Dynamics in Complex Chemical Systems Biman Bagchi Indian Institute of Science Bangalore
Liquid-Liquid Phase Transitions and Water-Like Anomalies in Liquids Erik Lascaris Final oral examination 9 July
Dynamic arrest in colloidal systems: from glasses to gels Francesco Sciortino Titolo !
Energetics and Structural Evolution of Ag Nanoclusters Rouholla Alizadegan (TAM) Weijie Huang (MSE) MSE 485 Atomic Scale Simulation.
Cluster Phases, Gels and Yukawa Glasses in charged colloid-polymer mixtures. Francesco Sciortino titolo.
HIM Instability and Phase Transition in Asymmetric Nuclei Kyung Hee University Suk-Joon Lee.
Critical Scaling of Jammed Systems Ning Xu Department of Physics, University of Science and Technology of China CAS Key Laboratory of Soft Matter Chemistry.
Mainz, November Francesco Sciortino Gel-forming patchy colloids and network glass formers: Thermodynamic and dynamic analogies Imtroduzione.
Statistical Mechanics of Ion Channels: No Life Without Entropy A. Kamenev J. Zhang J. Zhang B. I. Shklovskii A. I. Larkin Department of Physics, U of Minnesota.
10 SOLIDS, LIQUIDS, AND PHASE TRANSITIONS
Colloidal Aggregation
“Patchy Colloidal Particles:
Inverse melting and phase behaviour of core-softened attractive disks
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
 Phase behavior of polymer solutions and polymer blends in confinement Juan C. Burgos Juan C. Burgos Texas A&M University College Station, TX
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
--Experimental determinations of radial distribution functions --Potential of Mean Force 1.
Marco G. Mazza Departmental Seminar Boston – February Acknowledgements: Kevin Stokely, BU Elena G. Strekalova, BU Giancarlo Franzese, Universitat.
Francesco Sciortino Gelling on heating. A patchy particle story
Self-generated electron glasses in frustrated organic crystals Louk Rademaker (Kavli Institute for Theoretical Physics, Santa Barbara) Leiden University,
Computational Physics (Lecture 10) PHY4370. Simulation Details To simulate Ising models First step is to choose a lattice. For example, we can us SC,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Non-local Transport of Strongly Coupled Plasmas Satoshi Hamaguchi, Tomoyasu Saigo, and August Wierling Department of Fundamental Energy Science, Kyoto.
On the understanding of self-assembly of anisotropic colloidal particles using computer simulation methods Nikoletta Pakalidou1✣ and Carlos Avendaño1 1.
SCHRÖDINGER EQUATION APPROACH TO THE UNBINDING TRANSITION OF BIOMEMBRANES AND STRINGS : RIGOROUS STUDY M. BENHAMOU, R. El KINANI, H. KAIDI ENSAM, Moulay.
On the understanding of self-assembly of anisotropic colloidal particles using computer simulation methods Nikoletta Pakalidou1✣ and Carlos Avendaño1 1.
Bangalore, June 2004 Potential Energy Landscape Description of Supercooled Liquids and Glasses.
Volume 99, Issue 5, Pages (September 2010)
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Colloidal matter: Packing, geometry, and entropy
T. M. Truskett, D.J. Milliron: University of Texas at Austin
Presentation transcript:

Genova, September Routes to Colloidal Gel Formation CCP2004 In collaboration with S. Bulderyev, E. La Nave, A. Moreno, S. Mossa, I. Saika-Voivod, P. Tartaglia, E. Zaccarelli titolo Thanks to the organizers and to Carlo Pierleone

Outline Outline and Motivations  Brief Review of Short-Range Attractive Colloidal Glass ( asymmetric colloid-polymer mixtures)  How to model disordered arrested states at low packing fraction (gels)  Routes:  Interrupted phase separation (irreversible gels)  Long Range Repulsive interactions (reversible)  Geometrical constraints (reversible)  Differences between gel and glasses

Depletion Interactions Depletion Interactions: A (C. Likos) Cartoon V(r) r   

MCT IDEAL GLASS LINES (PY) - SQUARE WELL MODEL - CHANGING  PRE Role of the width  A4A4 V(r) Vari delta The role of delta A3A3 Large  Small 

F. Sciortino, Nat. Mat. 1, 145 (2002). Nat Mat

confirmed by experiments Mallamace et al. PRL (2000) Pham et al. Science (2002) Eckert and Bartsch PRL (2002) and simulations Puertas et al PRL (2002) Zaccarelli et al PRE (2002) Citazioni

Pham et al 2004

Square Well 3% width Phase Diagram for Square Well (3%) Repulsive Glass Attractive Glass Liquid+Gas Coexistence A3 Spinodal AHS (Miller&Frenkel) Iso- diffusivity lines Percolation Line Spinodal (and Baxter)

Virial Scaling in the dynamics: Toward the Baxter Limit G. Foffi and C. De Michele,preprint

Gelation as a result of phase separation (interrupted by the glass transition) T T  

The quest for the ideal (thermoreversible) gel….model 1) Long Living reversible bonds 2)No Phase Separation 3) No Crystallization Are 1 and 2 mutually exclusive ? The quest LowTemperature Condensation Long Bond Lifetime The quest

Surface Tension How to stay at low T without condensation ? The quest Reasons for condensation (Frank, Hill, Coniglio) Physical Clusters at low T ifthe infinite cluster is the lowest (free)energy state How to make the surface as stable as the bulk (or more)?

Short Range Attraction Long Range Repulsion Competition Between Short Range Attraction and Long Range Repulsion FS et al, PRL 2004

Groenewold and Kegel Upper Limit Optimal Size How to make negative ? Yukawa

lowering T Increasing packing fraction Figure gel yukawa

Geometric Constraint: Maximum Valency SW if # of bonded particles <= N max HS if # of bonded particles > N max V(r) r Maximum Valency

N MAX -modified Phase Diagram Phase Diagram

Bond Lifetime.. Several more decades..

Gel vs Glass - MSD T=0.1 Typical Glass Value

Gel vs Glass: Density Autocorrelation Functions fqfq

Fq gel vs glass

Summary…. Designig Thermoreversible Gels: Models with small surface tension (charged colloids, sticky points) A simple model for thermoreversible gel Gels and Glasses: Differences in localization length Differences in experimental observables

Stoke

Energy per Particle Ground State Energy Known ! It is possible to equilibrate at low T !

How to stay at low T without condensation ? The quest Reasons for condensation (Frank, Hill, Coniglio) Physical Clusters at low T ifthe infinite cluster is the lowest energy state How to make the surface more stable than the bulk ?

Thermodynamics in the IS formalism Stillinger- Weber F(T)=-T S conf (, T) +f basin (,T) with f basin (e IS,T)= e IS +f vib (e IS,T) and S conf (T)=k B ln[  ( )] Basin depth and shape Number of explored basins Free energy

It is possible to calculate exactly the basin free energy ! Basin Free energy

Viscosity and Diffusivity: Arrhenius

Stoke-Einstein Relation