ELEC 3600 T UTORIAL 2 V ECTOR C ALCULUS Alwin Tam Rm. 3121A.

Slides:



Advertisements
Similar presentations
Differential Calculus (revisited):
Advertisements

Dr. Charles Patterson 2.48 Lloyd Building
Electric Flux Density, Gauss’s Law, and Divergence
Chapter 9: Vector Differential Calculus Vector Functions of One Variable -- a vector, each component of which is a function of the same variable.
Chapter 6 Vector analysis (벡터 해석)
VECTOR CALCULUS 1.10 GRADIENT OF A SCALAR 1.11 DIVERGENCE OF A VECTOR
PH0101 UNIT 2 LECTURE 2 Biot Savart law Ampere’s circuital law
ENTC 3331 RF Fundamentals Dr. Hugh Blanton ENTC 3331.
EEE 340Lecture Curl of a vector It is an axial vector whose magnitude is the maximum circulation of per unit area as the area tends to zero and.
Chapter 29 Faraday’s Law. Electromagnetic Induction In the middle part of the nineteenth century Michael Faraday formulated his law of induction. It had.
Chapter 13-Vector Calculus Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
EE3321 ELECTROMAGENTIC FIELD THEORY
EE2030: Electromagnetics (I)
Fundamentals of Applied Electromagnetics
2-7 Divergence of a Vector Field
Chapter 1 Vector analysis
1.1 Vector Algebra 1.2 Differential Calculus 1.3 Integral Calculus 1.4 Curvilinear Coordinate 1.5 The Dirac Delta Function 1.6 The Theory of Vector Fields.
Lecture 18 Today Curl of a vector filed 1.Circulation 2.Definition of Curl operator in Cartesian Coordinate 3.Vector identities involving the curl.
Coordinate Systems.
PHY 042: Electricity and Magnetism
Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center.
The Electromagnetic Field. Maxwell Equations Constitutive Equations.
AOE 5104 Class 4 9/4/08 Online presentations for today’s class: –Vector Algebra and Calculus 2 and 3 Vector Algebra and Calculus Crib Homework 1 Homework.
ELEN 3371 Electromagnetics Fall Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact:
EED 2008: Electromagnetic Theory Özgür TAMER Vectors Divergence and Stokes Theorem.
MAGNETOSTATIC FIELD (STEADY MAGNETIC)
UNIVERSITI MALAYSIA PERLIS
Chapter 10 Vector Calculus
Review of Vector Analysis
1 Chapter 2 Vector Calculus 1.Elementary 2.Vector Product 3.Differentiation of Vectors 4.Integration of Vectors 5.Del Operator or Nabla (Symbol  ) 6.Polar.
EE 543 Theory and Principles of Remote Sensing
Gradient of Scalar Field In Cartesian co-ordinates:
Operators. 2 The Curl Operator This operator acts on a vector field to produce another vector field. Let be a vector field. Then the expression for the.
EEL 3472 Magnetostatics 1. If charges are moving with constant velocity, a static magnetic (or magnetostatic) field is produced. Thus, magnetostatic fields.
Vector Calculus.
AOE 5104 Class 5 9/9/08 Online presentations for next class:
Copyright © Cengage Learning. All rights reserved.
ENE 325 Electromagnetic Fields and Waves Lecture 3 Gauss’s law and applications, Divergence, and Point Form of Gauss’s law 1.
§1.2 Differential Calculus
§1.2 Differential Calculus Christopher Crawford PHY 416G
POSITION AND COORDINATES l to specify a position, need: reference point (“origin”) O, distance from origin direction from origin (to define direction,
1 Engineering Electromagnetics Essentials Chapter 1 Vector calculus expressions for gradient, divergence, and curl Introduction Chapter 2 and.
Chapter 1 Vector Analysis Gradient 梯度, Divergence 散度, Rotation, Helmholtz’s Theory 1. Directional Derivative 方向导数 & Gradient 2. Flux 通量 & Divergence 3.
Mathematics Review A.1 Vectors A.1.1 Definitions
Angular Velocity: Sect Overview only. For details, see text! Consider a particle moving on arbitrary path in space: –At a given instant, it can.
1 Vector Calculus. Copyright © 2007 Oxford University Press Elements of Electromagnetics Fourth Edition Sadiku2 Figure 3.1 Differential elements in the.
Multiplication of vectors Two different interactions (what’s the difference?)  Scalar or dot product : the calculation giving the work done by a force.
By: Engr. Hinesh Kumar Lecturer I.B.T, LUMHS ELECTRIC FLUX & ELECTRIC FLUX DENSITY.
مفردات منهج الكهرومغناطيسية CH 1: vector analysis Change in Cartesian coordinates systems. Change of axis (Rotation Matrices). Field and differential operators.
SILVER OAK COLLEGE OF ENGG&TECH NAME:-KURALKAR PRATIK S. EN.NO: SUBJECT:- EEM GUIDED BY:- Ms. REENA PANCHAL THE STEADY STATE OF MAGNETIC.
Operators in scalar and vector fields
ELECTROMAGNETICS THEORY (SEE 2523).  An orthogonal system is one in which the coordinates are mutually perpendicular.  Examples of orthogonal coordinate.
1 Line Integrals In this section we are now going to introduce a new kind of integral. However, before we do that it is important to note that you will.
(i) Divergence Divergence, Curl and Gradient Operations
Chapter 2 Vector Calculus
Vector integration Linear integrals Vector area and surface integrals
1.3 Integral Calculus Line, Surface, Volume Integrals.
ECE 305 Electromagnetic Theory
Soh Ping Jack, Azremi Abdullah Al-Hadi, Ruzelita Ngadiran
Chapter 18: Line Integrals and Surface Integrals
Second Derivatives The gradient, the divergence and the curl are the only first derivatives we can make with , by applying twice we can construct.
Chapter 3 Overview.
Electromagnetics II.
EEE 161 Applied Electromagnetics
Fields and Waves I Lecture 8 K. A. Connor Y. Maréchal
EEE 161 Applied Electromagnetics
Vectors Scalars and Vectors:
Electricity and Magnetism I
Applied Electromagnetic Waves
Fundamentals of Applied Electromagnetics
Presentation transcript:

ELEC 3600 T UTORIAL 2 V ECTOR C ALCULUS Alwin Tam Rm. 3121A

W HAT H AVE W E L EARNT S O F AR ? Classification of vector & scalar fields Differential length, area and volume Line, surface and volume integrals Del operator Gradient of a scalar Divergence of a vector – Divergence theorem Curl of a vector – Stokes’ theorem Laplacian of a scalar

S CALAR A ND V ECTOR F IELD What is scalar field? Quantities that can be completely described from its magnitude and phase. i.e. weight, distance, speed, voltage, impedance, current, energy What is a vector field? Quantities that can be completely described from its magnitude, phase and LOCATION. i.e. force, displacement, velocity, electric field, magnetic field Need some sense of direction i.e. up, down right and left to specify

S CALAR A ND V ECTOR F IELD (C ONT.) Is temperature a scalar quantity? A. Yes B. No Answer: A, because it can be completely described by a number when someone ask how hot is today. Is acceleration a scalar quantity? A. Yes B. No Answer: B, because it requires both magnitude and some sense of direction to describe i.e. is it accelerating upward, downwards, left or right etc.

V ECTOR C ALCULUS What is vector calculus? Concern with vector differentiation and line, surface and volume integral So why do we need vector calculus?? To understand how the vector quantities i.e. electric field, changes in space (vector differential) To determine the energy require for an object to travel from one place to another through a complicated path under a field that could be spatially varying (line integral) i.e. To pass ELEC 3600!! (vector differential and line integral)

D IFFERENTIAL L ENGTH, V OLUME AND S URFACE (C ARTESIAN C OORDINATE ) Differential length A vector whose magnitude is close to zero i.e. dx, dy and dz → 0 Differential volume An object whose volume approaches zero i.e. dv = dxdydz → 0 (scalar) Differential surface A vector whose direction is pointing normal to its surface area Its surface area |dS| approach zero i.e. shaded area ~ 0 Calculated by cross product of two differential vector component Differential is infinitely small difference between 2 quantities

D IFFERENTIAL L ENGTH, V OLUME AND S URFACE (C YLINDRICAL C OORDINATE ) All vector components MUST have spatial units i.e. meters, cm, inch etc.

D IFFERENTIAL L ENGTH, V OLUME A ND S URFACE (S PHERICAL C OORDINATE ) z x y All vector components MUST have spatial units i.e. meters, cm, inch etc.

L INE I NTEGRAL Line integral: Integral of the tangential component of vector field A along curve L. 2 vectors are involve inside the integral Result from line integral is a scalar Line integral Definite integral Diagram Maths description Result Area under the curve A measure of the total effect of a given field along a given pathfield Information required 1.Vector field expression A 2.Path expression 1.Function f(x) 2.Integral limits Integral limits depends on path

S URFACE & V OLUME I NTEGRAL Surface integral: Integral of the normal component of vector field A along curve L. Two vectors involve inside the integral Result of surface integral is a scalar Volume integral: Integral of a function f i.e. inside a given volume V. Two scalars involve inside the integral Result of volume integral is a scalar

S URFACE & V OLUME I NTEGRAL (C ONT.) Surface integral Volume integral Diagram Maths description Result A measure of the total effect of a scalar function i.e. temperature, inside a given volume A measure of the total flux from vector field passing through a given surface Information required 1.Vector field expression A 2.Surface expression 1.Scalar Function  v 2.Volume expression Integral limits depends on surface Integral limits depends on volume

P ROBLEM 1 Given that, calculate the circulation of F around the (closed) path shown in the following figure.

D EL O PERATOR Vector differential operator Must operate on a quantity (i.e. function or vector) to have a meaning Mathematical form: Cartesian CylindricalSpherical

S UMMARY O F G RAD, D IV & C URL GradientDivergenceCurl Scalar f(x,y) Vector A Expression (Cartesian) Expression (Cylindrical) Expression (Spherical) ResultVector ScalarVector

S UMMARY O F G RAD, D IV & C URL GradientDivergenceCurl Physical meaning A vector that gives direction of the maximum rate of change of a quantity i.e. temp i.e. Flux out < flux in i.e. Flux out > flux in Incompressible Flux out = flux in

D IVERGENCE T HEOREM Divergence theorem: Total outward flux of a vector field A through a closed surface S is the same as the volume integral of div A. i.e. Transformation of volume integral involving div A to surface integral involving A Equation: Physical meaning: The total flux from field A passing through a volume V is equivalent to summing all the flux at the surface of V.

P ROBLEM 2 (M IDTERM E XAM 2013) Verify the divergence theorem for the vector r 2 a r within the semisphere.

S TOKE ’ S T HEOREM Stoke’s Theorem: The line integral of field A at the boundary of a closed surface S is the same as the total rotation of field A at the surface. i.e. Transformation of surface integral involving curl A to line integral of A Equation: Physical meaning: The total effect of field A along a closed path is equivalent to summing all the rotational component of the field inside the surface of which the path enclose.

L APLACIAN O F A S CALAR F UNCTION U is a scalar function of x, y, z (i.e. temperature) Laplacian of a scalar = Divergence of a Gradient of scalar function. Important operator when working with MAXWELL’S EQUATION!!

P ROBLEM 3 Given that, find (a) Where L is shown in the following figure (b) Where S is the area bounded by L (c) Is Stokes’s theorem satisfied? 1 2 3