F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H.

Slides:



Advertisements
Similar presentations
Electric Quadrupole Transitions in the Band of Oxygen: a Case Study Iouli E. Gordon Samir Kassi Alain Campargue Geoffrey C. Toon a 1  g — X 3  g -
Advertisements

PHOBOS-GRUNT GAP \ TDLAS GAP G. Durry, J. Cousin, L. Joly GSMA, CNRS, Reims University, France I. Vinogradov, A. Titov, O. Korablev, M. Gerasimov IKI,
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
CAVITY RING DOWN SPECTROSCOPY
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
23 June Performance of a Continuous Supersonic Expansion Discharge Source Evaluated by Laser-Induced Fluorescence Spectroscopy.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
THE ACE SATELLITE SOLAR SPECTRUM
Paul Raston, Donald Kelloway, and Wolfgang Jäger Department of Chemistry, University of Alberta, Canada the OSU symposium, 2012 Infrared spectroscopy of.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Mikael Siltanen,1 Markus Metsälä,1
AB INITIO INVESTIGATION OF C 2 H 2 -X VAN DER WAALS COMPLEXES (X=Ar,Kr, Xe) C. Lauzin, E. Cauët, J. Demaison, J. Liévin Chimie quantique et Photophysique.
DETECTION OF THE AMMONIUM ION IN SPACE SUPPORTED BY AN IMPROVED DETERMINATION OF THE 1 0 − 0 0 ROTATIONAL FREQUENCY FROM THE 4 BAND OF NH 3 D + J. L. DOMÉNECH,
Infrared spectra of complexes containing acetylene-d2 Clément Lauzin, J. Norooz Oliaee, N. Moazzen-Ahmadi Department of Physics and Astronomy University.
HIGH RESOLUTION OVERTONE SPECTROSCOPY OF THE ACETYLENE VAN DER WAALS DIMER, 12 (C 2 H 2 ) 2 K. D IDRICHE, C. L AUZIN, T. F ÖLDES, D. G OLEBOWSKI AND M.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND PRELIMINARY ANALYSIS OF C–H STRETCHING.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
Quantum-Noise-Limited Cavity Ring-Down Spectroscopy in the Mid-Infrared Adam J. Fleisher,* David A. Long, Qingnan Liu, and Joseph T. Hodges Material Measurement.
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
I. Ventrillard-Courtillot, Th. Desbois, T. Foldes and D. Romanini
Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Linhan Shen1, Thinh Bui1, Lance Christensen2, Mitchio Okumura1
OSU International Symposium on Molecular Spectroscopy June 18 – 22, TF Infrared/Raman -- TF01, Tuesday, June 19, 2012.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
The Cyclic CO 2 Trimer: Observation of two parallel bands and determination of intermolecular out-of-plane torsional frequencies Steacie Institute for.
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
INVESTIGATION OF VAN DER WAALS COMPLEXES IN A FREE EXPANSION OF C 2 H 2 /X (X=RARE GAS) (X=Rg) USING CW CAVITY RING-DOWN SPECTROSCOPY IN THE OVERTONE RANGE.
Spectroscopy of CH 3 OH and ClOH in superfluid helium nanodroplets Paul Raston and Wolfgang Jäger Department of Chemistry, University of Alberta, Canada.
Observation of combination bands involving intermolecular vibrations of CO 2 -, N 2 - and OCS-N 2 O complexes using an external cavity quantum cascade.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Time-Resolved IR and Mass Spectroscopy of Laser-Ablated Magnesium
K.-X. AuYong, J.M. King, A.R.W. McKellar, & J.K.G. Watson
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
Rovibrational spectrum of the Ar-NO complex in 5.3 μm region
FT Multipass MS probe TDL/CRDS FANTASIO Fourier trANsform,
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
The Near-IR Spectrum of CH3D
Advertisement.
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
SPECTRA OF C6H6-Rgn (n=1,2) IN THE 3 MIRCON INFRARED BAND SYSTEM OF BENZENE A. J. BARCLAY, A.R.W. McKELLAR, N. MOAZZEN-AHMADI.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Presentation transcript:

F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H ERMAN Université libre de Bruxelles Belgium International Symposium on Molecular Spectroscopy 65th Meeting June 21-25, 2010 – Ohio State University

FANTASIO Continuous S UPERSONIC JET FTIR SPECTROMETER Q UADRUPOLE MASS SPECTROMETER CW CRDS SYSTEM (1.5 µm)    C 2 H 2 :2CH Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn Herman et al., Mol. Phys., 2007, 105, 815

FANTASIO SET - UP P 0, T 0 P<P 0, T<T 0 Supersonic expansion: - Continuous - turbomolecular pump: Leybold MAG W3200 CT capacity: 3200 l/s - primary pump: Alcatel ADS 860 HII group - P 0  0.5 atm P  torr - Slit/nozzle Cavity Ring Down system: - CW - 40 DFB diodes 1.5 µm cm -1 - Laser width: 1 MHz

I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold

I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold

I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold

F IRST RESULTS Lauzin et al. J. Phys. Chem. A, 2009, 113, 2359 C 2 H 2 -ArC 2 H 2 - N 2 OC 2 H 2 - CO 2 Lauzin et al. J. Chem. Phys., 2009, 130, Didriche et al. Chem. Phys. Lett.., 2009, 469, 35

U PGRADING FANTASIO FANTASIO + FANTASIO Better S/N Increase of the pumping capacity Increase of the sensitivity of the CRDS

E FFECT OF THE PUMP CAPACITY DOUBLING  (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm

E FFECT OF THE PUMP CAPACITY DOUBLING  (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm

E FFECT OF THE PUMP CAPACITY DOUBLING  (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 Pressure ratio ≈ 10 5 Use of Ne and He as carrier gas Pressure ratio ≈ 10 5 Use of Ne and He as carrier gas GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm C 2 H 2 (1%)/Ar P 0 = 1.6 atm

I MPROVING SENSITIVITY  (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length C 2 H 2 (1%)/Ar P 0 = 1.6 atm

I MPROVING SENSITIVITY  (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length C 2 H 2 (1%)/Ar P 0 = 1.6 atm

I MPROVING SENSITIVITY  (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length S/N x 5 C 2 H 2 (1%)/Ar P 0 = 1.6 atm

I MPROVING SENSITIVITY  (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length 1 cm slitwhole cavity (54 cm) S/N=2 S/N x 5  min = 3.2 x cm -1  min = 6 x cm -1 C 2 H 2 (1%)/Ar P 0 = 1.6 atm

P URE ACETYLENE COMPLEX  (10 -6 cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle

P URE ACETYLENE COMPLEX  (10 -6 cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle

P URE ACETYLENE COMPLEX  (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle

P URE ACETYLENE COMPLEX b a  (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) unit 1 unit 2 b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle

P URE ACETYLENE COMPLEX b a  (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) unit 1 unit 2 b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle

wavenumber (cm -1 ) a-type simulation PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm

Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm

Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm

b a unit 1 unit 2 Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm

b a unit 1 unit 2 Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz)  JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 more dedicated study is needed... wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation 2 CH stretches P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm

F ROM FANTASIO TO FANTASIO+ FANTASIO + FANTASIO S/N x 10 Femto-FANTASIO -injection of liquid samples -T° controlled nozzle - tunable laser optical probe C 2 H 2 -Ar, C 2 H 2 -CO 2, C 2 H 2 -N 2 O C 2 H 2 - C 2 H 2,C 2 H 2 -Kr C 2 H 2 -Ne ……

N EW ABSORPTION SOURCE MultipassCavity-enhanced Optical Parametric Oscillator (OPO) pumped by a Ti:Sa femtosecond coupled to a FTIR spectrometer. Tunability: cm passes 48 scans C 2 H 2 (50%)/Ar P = 2 atm res: 0.03 cm -1

A CKNOWLEDGEMENTS Xavier de Ghellinck Athéna Rizopoulos Patrick Van Poucke Baris Kizil Colin Western (University Of Bristol): for his help on the PGOPHER program Funding: Samir Kassi (Institut Joseph Fourier/ Grenoble): for his technical support on the OPO system