F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H ERMAN Université libre de Bruxelles Belgium International Symposium on Molecular Spectroscopy 65th Meeting June 21-25, 2010 – Ohio State University
FANTASIO Continuous S UPERSONIC JET FTIR SPECTROMETER Q UADRUPOLE MASS SPECTROMETER CW CRDS SYSTEM (1.5 µm) C 2 H 2 :2CH Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn Herman et al., Mol. Phys., 2007, 105, 815
FANTASIO SET - UP P 0, T 0 P<P 0, T<T 0 Supersonic expansion: - Continuous - turbomolecular pump: Leybold MAG W3200 CT capacity: 3200 l/s - primary pump: Alcatel ADS 860 HII group - P 0 0.5 atm P torr - Slit/nozzle Cavity Ring Down system: - CW - 40 DFB diodes 1.5 µm cm -1 - Laser width: 1 MHz
I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold
I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold
I MPROVING SENSITIVITY DFB laser out laser ONlaser OFF threshold
F IRST RESULTS Lauzin et al. J. Phys. Chem. A, 2009, 113, 2359 C 2 H 2 -ArC 2 H 2 - N 2 OC 2 H 2 - CO 2 Lauzin et al. J. Chem. Phys., 2009, 130, Didriche et al. Chem. Phys. Lett.., 2009, 469, 35
U PGRADING FANTASIO FANTASIO + FANTASIO Better S/N Increase of the pumping capacity Increase of the sensitivity of the CRDS
E FFECT OF THE PUMP CAPACITY DOUBLING (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm
E FFECT OF THE PUMP CAPACITY DOUBLING (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm
E FFECT OF THE PUMP CAPACITY DOUBLING (10 -6 cm -1 ) wavenumber (cm -1 ) S/N x 2 Pressure ratio ≈ 10 5 Use of Ne and He as carrier gas Pressure ratio ≈ 10 5 Use of Ne and He as carrier gas GAS C 2 H 2 (1%)/Ar P 0 = 0.8 atm C 2 H 2 (1%)/Ar P 0 = 1.6 atm
I MPROVING SENSITIVITY (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length C 2 H 2 (1%)/Ar P 0 = 1.6 atm
I MPROVING SENSITIVITY (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length C 2 H 2 (1%)/Ar P 0 = 1.6 atm
I MPROVING SENSITIVITY (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length S/N x 5 C 2 H 2 (1%)/Ar P 0 = 1.6 atm
I MPROVING SENSITIVITY (10 -6 cm -1 ) wavenumber (cm -1 ) R =99.99% µs 8300 passes 83 m absorption path length R = % 125 µs passes 660 m absorption path length 1 cm slitwhole cavity (54 cm) S/N=2 S/N x 5 min = 3.2 x cm -1 min = 6 x cm -1 C 2 H 2 (1%)/Ar P 0 = 1.6 atm
P URE ACETYLENE COMPLEX (10 -6 cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle
P URE ACETYLENE COMPLEX (10 -6 cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle
P URE ACETYLENE COMPLEX (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle
P URE ACETYLENE COMPLEX b a (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) unit 1 unit 2 b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle
P URE ACETYLENE COMPLEX b a (10 -6 cm -1 ) wavenumber (cm -1 ) rQ3(J)rQ3(J) rQ2(J)rQ2(J) rQ1(J)rQ1(J) rQ0(J)rQ0(J) pQ1(J)pQ1(J) pQ2(J)pQ2(J) pQ3(J)pQ3(J) pQ4(J)pQ4(J) unit 1 unit 2 b-type simulation (20K) PGOPHER (C. Western, University Of Bristol) Ground State*B state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, C 2 H 2 (6%)/Ar P 0 = 1.2 atm /slit nozzle C 2 H 2 (15%)/Ne P 0 = 3 atm /circular nozzle
wavenumber (cm -1 ) a-type simulation PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm
Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm
Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm
b a unit 1 unit 2 Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm
b a unit 1 unit 2 Ground State*A state origin (cm-1) A (MHz) B (MHz) C (MHz) JK (MHZ) Fraser et al., J. Chem. Phys., 1988, 89, 6028 more dedicated study is needed... wavenumber (cm -1 ) a-type simulation (20K) PGOPHER (C. Western, University Of Bristol) a-type simulation + b-type simulation 2 CH stretches P URE ACETYLENE COMPLEX C 2 H 2 (6%)/Ar P 0 = 1.2 atm
F ROM FANTASIO TO FANTASIO+ FANTASIO + FANTASIO S/N x 10 Femto-FANTASIO -injection of liquid samples -T° controlled nozzle - tunable laser optical probe C 2 H 2 -Ar, C 2 H 2 -CO 2, C 2 H 2 -N 2 O C 2 H 2 - C 2 H 2,C 2 H 2 -Kr C 2 H 2 -Ne ……
N EW ABSORPTION SOURCE MultipassCavity-enhanced Optical Parametric Oscillator (OPO) pumped by a Ti:Sa femtosecond coupled to a FTIR spectrometer. Tunability: cm passes 48 scans C 2 H 2 (50%)/Ar P = 2 atm res: 0.03 cm -1
A CKNOWLEDGEMENTS Xavier de Ghellinck Athéna Rizopoulos Patrick Van Poucke Baris Kizil Colin Western (University Of Bristol): for his help on the PGOPHER program Funding: Samir Kassi (Institut Joseph Fourier/ Grenoble): for his technical support on the OPO system