Q20: The X-band collider has much tighter requirements for the alignment of the beam orbit with the structure axis, yet the basic instrumental precision.

Slides:



Advertisements
Similar presentations
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Advertisements

Issues in ILC Main Linac and Bunch Compressor from Beam dynamics N. Solyak, A. Latina, K.Kubo.
Tests of DFS and WFS at ATF2 Andrea Latina (CERN), Jochem Snuverink (RHUL), Nuria Fuster (IFIC) 18 th ATF2 Project Meeting – Feb – LAPP, Annecy.
Ion instability at SuperKEKB H. Fukuma (KEK) and L. F. Wang (SLAC) ECLOUD07, 12th Apr. 2007, Daegu, Korea 1. Introduction 2. Ion trapping 3. Fast ion instability.
Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop Kiyoshi KUBO References: TESLA TDR ILC-TRC-2.
January 2004 GLC/NLC – X-Band Linear Collider Peter Tenenbaum Beam Dynamics of the IR: The Solenoid, the Crossing Angle, The Crab Cavity, and All That.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
BBA Related Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
SLAC ILC Accelerator: Luminosity Production Peter Tenenbaum HEP Program Review June 15, 2005.
Luminosity Stability and Stabilisation Hardware D. Schulte for the CLIC team Special thanks to J. Pfingstner and J. Snuverink 1CLIC-ACE, February 2nd,
ATF2 Status and Plan K. Kubo ATF2, Final Focus Test for LC Achievement of 37 nm beam size (Goal 1) – Demonstration of a compact final focus.
Gek 06/041 ITRP Comments on Question 7 GEK 1/5/04 7.Describe the steps in the scheme to align the rf structures/cavities, quadrupoles, BPM’s and beam delivery.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Alignment and Beam Stability
Ground Motion + Vibration Transfer Function for Final QD0/SD0 Cryomodule System at ILC Glen White, SLAC ALCPG11, Eugene March 21, 2011.
Trajectory Correction and Tuning James Jones Anthony Scarfe.
Verification of Beam-Based Alignment Algorithms at FACET A. Latina, J. Pfingstner, D. Schulte (CERN) E. Adli (Univ. of Oslo) With the collaboration of:
Gek 16/6/041 ITRP Comments on Question 19 GEK 9/06/04 19) For the X-band (warm) technology, detail the status of the tests of the full rf delivery system.
ATF2 optics … 1 3 rd Mini-Workshop on Nano Project at ATF ATF2 optics, tuning method and tolerances of initial alignment, magnets, power supplies etc.
March 7, 2007 LET Issues (Cai/Kubo/Zisman) Global Design Effort 1 Low-Emittance Tuning Issues and Plans Yunhai Cai, Kiyoshi Kubo and Michael S. Zisman.
Main Linac Integration Work Packages Chris Adolphsen Dec 11, 2007 High Priority Items in Red.
Accelerator Physics Issues Shekhar Mishra Sept 17-19, 1996 Main Injector DOE Review.
Y. Ohnishi / KEK KEKB LER for ILC Damping Ring Study Lattice simulation of lattice errors and optics corrections. November 1, 2007 Y. Ohnishi / KEK.
ILC Feedback System Studies Nikolay Solyak Fermilab 1IWLC2010, Geneva, Oct.18-22, 2010 N.Solyak.
1.Energy reach  High power klystrons and modulators for X-band still need development and industrialization, and thus brings risk. But klystrons of similar.
Summary of WG1 K. Kubo, D. Schulte, P. Tenenbaum.
DESY GDE Meeting Global Design Effort 1 / 12 Status of RTML Design and Tuning Studies PT SLAC.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
ILC BDS Static Beam-Based Alignment and Tuning Glen White SLAC 1.Aims. 2.Error parameters and other assumptions. 3.Overview of alignment and tuning procedure.
1 BROOKHAVEN SCIENCE ASSOCIATES Storage Ring Commissioning Samuel Krinsky-Accelerator Physics Group Leader NSLS-II ASAC Meeting October 14-15, 2010.
Report of 2 nd ILC Workshop (Snowmass) Working Group Kiyoshi KUBO references: Slides of the plenary talks in the workshop by P.Tenembaum and.
July 19-22, 2006, Vancouver KIRTI RANJAN1 ILC Curved Linac Simulation Kirti Ranjan, Francois Ostiguy, Nikolay Solyak Fermilab + Peter Tenenbaum (PT) SLAC.
Multibunch beam stability in damping ring (Proposal of multibunch operation week in October) K. Kubo.
Beam stability in damping ring - for stable extracted beam for ATF K. Kubo.
Beam Dynamics WG K. Kubo, N. Solyak, D. Schulte. Presentations –N. Solyak Coupler kick simulations update –N. Solyak CLIC BPM –A. Latina: Update on the.
J. Pfingstner Imperfections tolerances for on-line DFS Improved imperfection tolerances for an on-line dispersion free steering algorithm Jürgen Pfingstner.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
Emittance Tuning Simulations in the ILC Damping Rings James Jones ASTeC, Daresbury Laboratory.
1 DFS Studies on the Main Linac with Rnd-walk-like motion (preliminary) Accelerator Physics Meeting 02 october 2007 Freddy Poirier.
1 DFS Studies on the Main Linac with Rnd-walk-like motion LET Beam Dynamics Workshop 12 th December 2007 Freddy Poirier.
Main Linac Tolerances What do they mean? ILC-GDE meeting Beijing Kiyoshi Kubo 1.Introduction, review of old studies 2.Assumed “static” errors.
Emittance preservation in the main linacs of ILC and CLIC Andrea Latina (CERN) Kiyoshi Kubo (KEK) LCWS University of Texas at Arlington - Oct
Beam-beam compensation at RHIC LARP Proposal Tanaji Sen, Wolfram Fischer Thanks to Jean-Pierre Koutchouk, Frank Zimmermann.
Simulations - Beam dynamics in low emittance transport (LET: From the exit of Damping Ring) K. Kubo
Introduction D. Schulte for K. Kubo and P. Tenenbaum.
Beam Physics Issue in BEPCII Commisionning Xu Gang Accelerator physics group.
Summary of Tuning, Corrections, and Commissioning ( Short summary of ATF2 meeting at SLAC in March 2007 ) and Hardware Issues for beam Tuning Toshiyuki.
DRAFT: What have been done and what to do in ILC-LET beam dynamics Beam dynamics/Simulations Group Beijing.
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
Corrections for multi-pass eRHIC lattice with large chromaticity Chuyu Liu ERL workshop 2015 June 7, 2015.
Collimation Aspects for Crab Cavities? R. Assmann, CERN Thanks to Daniel Wollmann for presenting this talk on my behalf (criticism and complaints please.
Beam-based alignment techniques for linacs Masamitsu Aiba, PSI BeMa 2014 workshop Bad Zurzach, Switzerland Thanks to Michael Böge and Hans Braun.
8 th February 2006 Freddy Poirier ILC-LET workshop 1 Freddy Poirier DESY ILC-LET Workshop Dispersion Free Steering in the ILC using MERLIN.
Progress in CLIC DFS studies Juergen Pfingstner University of Oslo CLIC Workshop January.
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
ILC Main Linac Beam Dynamics Review K. Kubo.
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
From Beam Dynamics K. Kubo
The Engineering Test Facility for nLC
ILC BDS Alignment, Tuning and Feedback Studies
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Emittance Dilution and Preservation in the ILC RTML
Beam Dynamics in Curved ILC Main Linac (following earth curvature)
ILC Z-pole Calibration Runs Main Linac performance
Accelerator Physics Technical System Group Review
Utilization of KEKB for ILC R&D
Beam-Based Alignment Results
Main Linac Beam Optics and Tolerances
Presentation transcript:

Q20: The X-band collider has much tighter requirements for the alignment of the beam orbit with the structure axis, yet the basic instrumental precision for alignment is the same as for the L-band collider. The SLC had great difficulty reaching its design luminosity in part because of the difficulty in controlling the beam orbit. How can it be demonstrated that the necessary control of the orbit can be obtained for the GLC/NLC? (cf. Q7) 6/29/2004 K. ITRP CALTECH

How do they do it? BNS autophasing Orbit feedback Initial alignment Beam-based alignment using –Movers for quads and rf girders –BPMs at quads and structures Solving issues at SLC

BNS Autophasing Cancels the head-tail wake force by variation of the quadrupole focusing force with an energy slope within a bunch. Valid for incoming orbit error/jitter. The necessary energy correlation for X-band is 1/5 of SLC, same as FFTB.

Orbit Feedback SLC had 50 orbit/beam feedbacks controlling 250 parameters. “These systems have been studied extensively in simulations and various performance limitations seen at SLC are now well understood. ” “The systems planned for the X-band collider have improvements in functionality and connectivity to correct these limitations and should give excellent performance.”

Initial Alignment Only necessary to set components within the capture range of the beam-based alignment. 50  m is possible for all components (  m is adequate). 25  m is possible for structure to rf-girder (4structures/girder) by Coordinate Measuring Machines. 100  m is possible for rf-girders.

Beam-based Alignment Movers at all quads(x,y), rf-girders(x,y,  ). BPM: –1/quad, 0.25  m resolution. –2/structure (=8/girder), 1  m resolution. Correction algorithms are verified by simulations, resulting 40% vertical emittance growth through the linac.

No SLC problems any more! No vibration of quads by a better support. “What about quads in the cryostat for the Cold (no measurement yet)?” No long-range wakefield by the DDS. No microwave instability in the damping ring, by carefull impedance estimation. “The Cold damping ring has less margin for the impedance budget.”

X-band orbit/emittance tuning scheme

Movers/BPM failures The X-band linac can preserve the emittance within allowable level if –1,200 quad BPMs –12,000 structure BPMs –1,200 quad movers –3,000 girder movers work flawlessly. How much tolerance do they have for malfunction of these devices? –An estimation has been made for mover failures (T. Himmel et al.) - No serious effects. –BPM malfunctioning will be also OK (by PT). –The model dependence of the correction may be OK (by PT).

Mover Failures - T. Himel et al, SLAC-TN Simulation studies of accelerator alignment as a function of time suggest that the Technology Options Report is probably far too pessimistic in estimating the luminosity impact of failed movers. Although the luminosity will gradually degrade as more movers become stuck and as the rest of the beam line diffuses further and further away from the stuck elements, the time required for even a 1% luminosity reduction appears to be much larger than the anticipated period between repair opportunities. This is the case even assuming a relatively large diffusive ground motion component, such as what has been measured at KEK. We conclude that mover failures will cause negligible luminosity loss in the NLC.

BPM errors The emittance growth time scales with A and with the number of BPMs. Given a linac with 600 BPMs and your KEKB ratio (3.3% failed BPMs) this would yield an emittance growth time of about 6 months -- that is, it would be necessary to do something other than standard mover steering after 6 months of operating like this (either tune emittance bumps or fix the BPMs). - P. Tenenbaum (private communications) KEKB: 30 out of 900 BPMs are regularly in “inconsistent” state.

Model dependence of the correction algorithm The errors in quad strengths, local energy is as high as 1% at SLC (sometimes 10% at KEK), while the field measurements are always better than 0.1%. we have two correction algorithms (DFS and simple moversteering). They are both model-dependent, but they are also both nulling techniques which permit iteration to improve their solutions: in the caseof DFS you expect to reach a point at which when you turn RF stations off the orbit does not change; in the case of simple mover steering you continue to move the magnets until the BPM orbit matches what you want(typically, move them until measured orbit = gold orbit). This means that if the errors are larger than expected, they will still converge but mayrequire more iterations. - PT (private comm.)

More issues Multibunch effects: bunch-to-bunch difference/jitter in –initial orbit/emittance –energy/phase –bunch length/energy spread –Residual effect by the remaining long range wake Robustness of the structure BPM –BPM center = center of the short range wake? –Effects under the high power environment? My impression: Nothing fatal has been found for the tuning of the X-band linac, but it still needs more attention than the cold machine.