Metazoan Genomes Fruit Fly Rice Puffer Fish. Drosophila melanogaster Fruit fly mutants have been studied for nearly 100 years. Fly labs have used phenotypes.

Slides:



Advertisements
Similar presentations
Advancing Science with DNA Sequence Maize Missouri 17 chromosome 10 project update Dan Rokhsar 3 October 2006.
Advertisements

The Human Genome Project Main reference: Nature (2001) 409,
Genome Projects A genome project is the complete DNA sequence of the genome of an organism, and the identification of all its genes Genome projects are.
Evolution of genomes.
Introduction to genomes & genome browsers
Human Genome Project What did they do? Why did they do it? What will it mean for humankind? Animation OverviewAnimation Overview - Click.
Genome Structure/Mapping Lisa Malm 05/April/2006 VCR 221 Lisa Malm 05/April/2006 VCR 221.
Chapter 15 The Human Genome Project and Genomics
© 2005 Prentice Hall Inc. / A Pearson Education Company / Upper Saddle River, New Jersey Puffer fish phylogeny From Figure 1 Mulley, J and Holland,
Duplication, rearrangement, and mutation of DNA contribute to genome evolution Chapter 21, Section 5.
living organisms According to Presence of cell The non- cellular organism The cellular organisms According to Type the Eukaryotes the prokaryotes human.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 18 LECTURE SLIDES.
Background About the Pufferfish: Fugu is a teleost fish belonging to the order Tetraodontiformes. Fugu rubripes, an eukaryota and vertebrate, more commonly.
Genes. Outline  Genes: definitions  Molecular genetics - methodology  Genome Content  Molecular structure of mRNA-coding genes  Genetics  Gene regulation.
Drosophila Genome How does it differ?. Differences Drosophila lacks canonical telomeres and the ortholog of vertebrate telomerase. Instead it has a unique.
Applications of Genetics 1. Gene Therapy – Pg 248 & 267 introducing correct gene to “cure” genetic disease 2. Polymerase Chain Reaction Pg making.
Goals of the Human Genome Project determine the entire sequence of human DNA identify all the genes in human DNA store this information in databases improve.
Reminder: Class on Friday, Discussion of Li et al. Proposal/Projects CAMERA feedback?
The Human Genome Project Public: International Human Genome Sequencing Consortium (aka HUGO) Private: Celera Genomics, Inc. (aka TIGR)
Active Lecture Questions for BIOLOGY, Eighth Edition Neil Campbell & Jane Reece Questions prepared by Jung Choi, Georgia Institute of Technology Copyright.
Comparative Genomics of the Eukaryotes
What is genomics? Study of genomes. What is the genome? Entire genetic compliment of an organism.
Genome of Drosophila species Olga Dolgova UAB Barcelona, 2008.
RICE GENOMICS: Progress and prospects. What is genomics?  The genome of a plant, animal or microbe is the totality of its genetic information including.
What is comparative genomics? Analyzing & comparing genetic material from different species to study evolution, gene function, and inherited disease Understand.
CO 10.
Chapter 5 Genome Sequences and Gene Numbers. 5.1Introduction  Genome size vary from approximately 470 genes for Mycoplasma genitalium to 25,000 for human.
Genomics BIT 220 Chapter 21.
Copyright © 2006 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint® Lectures Lectures by Greg Podgorski, Utah State University Back to.
Genome Organization and Evolution. Assignment For 2/24/04 Read: Lesk, Chapter 2 Exercises 2.1, 2.5, 2.7, p 110 Problem 2.2, p 112 Weblems 2.4, 2.7, pp.
GenomesGenomes Chapter 21 Genomes Sequencing of DNA Human Genome Project countries 20 research centers.
Biological Motivation for Fragment Assembly Rhys Price Jones Anne R. Haake.
IPlant Genomics in Education Workshop Genome Exploration in Your Classroom.
Development: differentiating cells to become an organism.
Ch. 21 Genomes and their Evolution. New approaches have accelerated the pace of genome sequencing The human genome project began in 1990, using a three-stage.
Used for detection of genetic diseases, forensics, paternity, evolutionary links Based on the characteristics of mammalian DNA Eukaryotic genome 1000x.
Chapter 21 Eukaryotic Genome Sequences
Anatomy of a Genome Project A.Sequencing 1. De novo vs. ‘resequencing’ 2.Sanger WGS versus ‘next generation’ sequencing 3.High versus low sequence coverage.
Click to edit Master title style Click to edit Master subtitle style CLICKER QUESTIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry,
1 Genome Evolution Chapter Introduction Genomes contain the raw material for evolution; Comparing whole genomes enhances – Our ability to understand.
Recombinant DNA Technology and Genomics A.Overview: B.Creating a DNA Library C.Recover the clone of interest D.Analyzing/characterizing the DNA - create.
IPlant Genomics in Education Workshop Genome Exploration in Your Classroom.
Chapter 5 The Content of the Genome 5.1 Introduction genome – The complete set of sequences in the genetic material of an organism. –It includes the.
Comparative genomics Haixu Tang School of Informatics.
Genome annotation and search for homologs. Genome of the week Discuss the diversity and features of selected microbial genomes. Link to the paper describing.
Population Dynamics Humans, Sickle-cell Disease, and Malaria How does a population of humans become resistant to malaria?
Arabidopsis thaliana The Model Plant for Genetic Engineering By Mike Douglas and Joanna Naymark.
Evolution at the Molecular Level. Outline Evolution of genomes Evolution of genomes Review of various types and effects of mutations Review of various.
Genomics Chapter 18.
Opener Chapter 24 – Genome Evolution. Comparative Genomes Powerful tool for exploring evolutionary divergence among organisms Footprints on the evolutionary.
How many genes are there?
Plasmodium falciparum (3D7) - published in Draft coverage. No sequence updates for a year. No new annotation since? Leishmania major Friedlin - version.
Eukaryotic genes are interrupted by large introns. In eukaryotes, repeated sequences characterize great amounts of noncoding DNA. Bacteria have compact.
E VOLUTION OF E UKARYOTIC G ENOMES G ENE 342 Lecture 13 – Comparative genomics.
Looking Within Human Genome King abdulaziz university Dr. Nisreen R Tashkandy GENOMICS ; THE PIG PICTURE.
IPlant Genomics in Education Workshop Genome Exploration in Your Classroom.
Chromosomal Basis of Inheritance Lecture 13 Fall 2008
Very important to know the difference between the trees!
SGN23 The Organization of the Human Genome
Genomes and Their Evolution
Lecture 6 By Ms. Shumaila Azam
Today… Review a few items from last class
Genomes and Their Evolution
Genetically Modified Organisms
Homework #2 is due 10/17 Bonus #1 is due 10/24 FrakenFlowers.
Evolution of eukaryote genomes
Morgan’s Experiment Sex-linked genes in Drosophila flies
Evolutionary genetics
Lesson Overview 17.4 Molecular Evolution.
Chapter 6 Clusters and Repeats.
Presentation transcript:

Metazoan Genomes Fruit Fly Rice Puffer Fish

Drosophila melanogaster Fruit fly mutants have been studied for nearly 100 years. Fly labs have used phenotypes and genetic crosses to characterize 2,500 genes. The fruit fly has 2 large chromosomes that account for 80% of the genome as well as 2 small chromosomes (including sex). Although the fly genome is 180 Mb, 1/3 of that is gene-poor repetitive heterochromatin This amount of unclonable DNA made sequencing slow.

Drosophila Chromosomes

WGS- Whole Genome Shotgun It was this highly repetitive genome that Craig Venter offered to use as a pilot for his WGS method. Started in May, the project was finished in record time by March, Over 3 million sequencing reactions of about 500 bp each were performed. A 12.8-fold coverage at 98% accuracy had been produced. The finished genome still had 1,299 gaps totaling 2.1 Mb of euchromatin.

Testing the Annotation 40 experts took 2 weeks to annotate 13,601 genes from Drosophila. They tested these annotations by searching for the 2,783 genes that had been discovered by Drosophila genetics. 99.8% had been identified correctly. About 500 more mRNAs than Drosophila has genes were found as ESTs, these apparently arise from alternate splicing. EST data bases were also useful for resolving exon boundaries.

Drosophila X Chromosome

How are Flies Different? Flies lack simple repeats at their telomeres and also lack telomerase. The density of transposons increases near heterochromatin, which has 13 x lower gene density than euchromatin. 20% of fly genes are found in us & worms. Flies are odor restricted, they have only 57 olfactory receptors instead of the 1,000 found in mice and worms. Flies have a greater proportion of transcription factors than worms or yeast.

Is Fly a Good Model Organism? Flies have many orthologs to human disease-causing genes. Even though flies lack kidneys, blood, or a heart- they have orthologs to genes involved in renal, blood & cardiovascular disease. Flies provide insight into human disease at a systems level (interaction of genes in vivo). Orthologs of p53 and retinoblastoma were found in fly, Parkinson’s and Alzheimer’s disease genes were found as well.

23 gaps remain in version 4, compared to the 1,300 in version 1.

History of Grass Grass has only been around since the dinosaurs became extinct, yet it now covers 20% of the earth.

Rice Genome 60% of the calories for a majority of people in the developing world comes from cereal grains, 1/3 of the world relies on rice. The IRGSP started in 1998, but other major players included Monsanto, Syngenta, Myriad Genetics, and the newly established Beijing Genomics Institute. China published the first rice genome sequence in 2001, followed by the IRGSP release in Two different subspecies, indica & japonica, were sequenced.

Comparison of Rice Genomes subspecies:indicajaponica bp in draft:361 Mb390 Mb bp in finished:466 Mb420 Mb % finished:92%93% coverage:4.2 fold6 fold # of genes:53,400-64,50032,000-50,000

Gene Duplication It appears that rice has undergone extensive duplication over time. About 58% of the genome is duplicated, with about 20% of the duplicated genes sharing synteny with their paralogs. Since rice has twice the genes as Arabidopsis, you would predict many Arabidopsis homologs in rice but not vice versa (85% of the former, compared to 50% of the latter were found).

Comparison with Other Grains Rice predates many of the other grains: sorghum, maize, barley, and wheat. It is expected rice genes will be syntenic with many of these species. About 2,000 QTL, quantitative trait loci, that influence measurable phenotypes have been mapped to the rice genome. This narrows the search for candidate genes and can help work in other grains.

Plants vs. Animals Animals and fungi tend to reduce extra in their genomes faster than plants. Wheat, for instance, appears to have duplicated its 7 chromosomes twice to 21. Plants have many more isozymes (members of a gene family with similar roles) than animals or fungi, perhaps because they can’t move if conditions change. Animals, on the other hand, have more transcription factors than plants. They have different strategies for coping with change.

Rice Chromosome 10

Insertion of Genes into Rice A number of genes in the rice genome had their origin in mitochondria or chloroplasts. One particular chloroplast insertion brought with it nearly a complete genome. These organellar genes are not expected to produce proteins since their promoter are more akin to that of prokaryotes. Even if they did, they would lack targeting signals required of nuclear genes. Plant genomes are more dynamic and unpredictable than we expected.

Future of Cereal Genomics More than 1 billion people live on < 1$/day. If the world population continues to grow at its current rate, grain production must increase 80% to meet the need for food. The International Rice Research Institute Genebank has over 100,000 varieties of rice which could contain production- enhancing QTLs. Genomic insights may be combined with traditional breeding methods to increase cereal crop production.

09_20_puffer.fish.jpg

Puffer Fish Genomes Why puffer fish? Rice feeds millions of people but puffer fish feeds only the daring few that risk being poisoned if it is not prepared right. Puffer fish has one of the smallest genomes of any vertebrate, not because of lack of genes but because of high coding capacity. Instead of looking for needles (genes) in a haystack (large genome), puffer fish is a box of needles.

Genome Facts Two puffer fish have been sequenced- marine (Takifugu rubripes) in 2002 and freshwater (Tetraodon nigroviridis) in The Tetraodon genome is about 342 Mb. WGS sequencing was used to get 8.3 fold coverage. 27,918 genes were found. Puffer fish has < 4,000 transposons, compared to the millions found in humans but they are more diverse and fit into 50 more groups than in humans.

Genome Duplication? Paralogs occurred in pairs more than expected, when the location of these were mapped- it was found that many adjacent genes had their paralogs on the same chromosome. Researchers have hypothesized that the puffer fish genome is the consequence of a whole genome duplication. Puffer fish is also predicted to have undergone more intrachromosomal recombination than interchromosomal.

Three predictions resulted: duplication occurred after fish diverged from other vertebrates comparison with a related non-duplicated genome should give orthologs in a 2:1 ratio human genes should have puffer fish orthologs on interleafed chromosomes All of these predictions were confirmed by an examination of the genome

Puffer Fish Genes are Interleafed

Reconstructing a Common Ancestor Working backwards from the Tetraodon chromosome map, researchers were able to recreate the karyotype for a common ancestor of fish and mammals. Using Occam’s razor to produce the most parsimonious karyotype, 12 original chromosomes are predicted. These same 12 chromosomes can be rearranged differently to produce our karyotype, after their size is expanded by the addition of many transposons.

Building the Tetraodon Genome

Building the Human Genome