不安定核反応実験における 高速中性子の検出 Fast Neutron Detection in Unstable Nuclei Reaction Experiment Ryuki Tanaka Tokyo Institute of Technology.

Slides:



Advertisements
Similar presentations
Fig. 1 Side View of DALI from Up-stream 1 H( 17 C, 16 C → 15 C + n + γ)X Raw Doppler Effect Corrected Abstract DALI is a γ-ray detector, which is an array.
Advertisements

Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Study of plastic scintillators for fast neutron measurements
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Status Report of Neutron Detector Simulation Development Brian Roeder Postdoc LPC Caen 20 Sept
TIME-LIKE BARYON FORM FACTORS: EXPERIMENTAL SITUATION AND POSSIBILITIES FOR PEP-N Roberto Calabrese Dipartimento di Fisica and I.N.F.N. Ferrara, Italy.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Workshop on Physics on Nuclei at Extremes, Tokyo Institute of Technology, Institute for Nuclear Research and Nuclear Energy Bulgarian Academy.
Abstract A time resolved radial profile neutron diagnostic is being designed for the National Spherical Torus Experiment (NSTX). The design goal is to.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
A scintillation detector for neutrons below 1 MeV with gamma-ray rejection Scintillators are 3 mm BC408, 10 layers total Adjacent layers are optically.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
The Inverse Kinematics Resonance Elastic Scattering Reaction of 10,11,12 Be+p Liu Yingdu( 刘应都 ) PHD candidate Advisor : Wang Hongwei, Ma Yugang
Possibilities of TOF measurements on NPI neutron generators Mitja Majerle Department of Nuclear Reactions Nuclear Physics Institute ASCR.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Measurement of the η’N scattering length at LEPS2 2014/2/20 Keigo Mizutani Kyoto Univ.
Development of the neutron counters for the Spin dipole resonance Kazuhiro Ishikawa.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Digital analysis of scintillator pulses generated by high-energy neutrons. Jan Novák, Mitja Majerle, Pavel Bém, Z. Matěj 1, František Cvachovec 2, 1 Faculty.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Measurements of the cross sections and Ay for D(p,n) inclusive breakup reaction at 170 MeV Y. Maeda Y. Maeda, T. Saito, H. Miyasako (Univ. of Miyazaki)
Measurements of the (n,xn) reactions cross sections using new digital methods. Habib Karam Group GRACE.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Gamma-induced positron lifetime and age-momentum
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Neutron detector developments at LPC Caen  -delayed neutron detectors  current limitations  future issues Search for new solid scintillators (Neutromania)
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
A search for strange tribaryonic states in the reaction Heejoong Yim Seoul National University For KEK-PS E549 collaboration.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
NASA 2001 Mars Odyssey page 1 Workshop HEND Russian Aviation and Space Agency Institute for Space Research Present knowledge of HEND efficiency.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Search for double-kaonic nuclear cluster (K - K - pp) using p+p reaction F.Sakuma, RIKEN discussion is based on Proc. Jpn. Acad., Ser. B, 87 (2011) ,
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be.
Kinematically complete measurement of Coulomb breakup of Borromean halo nuclei at the SAMURAI facility at RIBF Takashi Nakamura Tokyo Institute of Technology.
(g, n) (g, p) experiment at SAMURAI
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
at TSL high energy neutron facility
the s process: messages from stellar He burning
Event Reconstruction and Data Analysis in R3BRoot Framework
Complete description of the 12C(n,n'3a) and 12C(n,a)9Be reactions in the High Precision neutron model A. R. Garcia, E. Mendoza and D. Cano-Ott Nuclear.
A. R. Garcia, E. Mendoza and D. Cano-Ott
Single trigger, no target
Neutron Detection with MoNA LISA
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
Neutron Detector Simulations for Fast Neutrons with GEANT4
GEANT Simulations and Track Reconstruction
Neutron Detector Simulations for Fast Neutrons with GEANT4
Presentation transcript:

不安定核反応実験における 高速中性子の検出 Fast Neutron Detection in Unstable Nuclei Reaction Experiment Ryuki Tanaka Tokyo Institute of Technology

17 Ne 18 Ne 19 Ne 20 Ne 21 Ne 22 Ne 23 Ne 24 Ne 25 Ne 26 Ne 27 Ne 28 Ne 29 Ne 30 Ne 31 Ne 32 Ne 34 Ne 17 F 18 F 19 F 20 F 21 F 22 F 23 F 24 F 25 F 26 F 27 F 29 F 31 F 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 26 O 28 O 12 N 13 N 14 N 15 N 16 N 17 N 18 N 19 N 20 N 21 N 22 N 23 N 9C9C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 22 C 8B8B 10 B 11 B 12 B 13 B 14 B 15 B 17 B 19 B 7 Be 9 Be 10 Be 11 Be 12 Be 14 Be 6 Li 7 Li 8 Li 9 Li 11 Li 3 He 4 He 6 He 8 He 1H1H 2H2H 3H3H Background Breakup reactions of extreme neutron-rich nuclei at Intermediate energies  Invariant Mass Spectroscopy involving Detection of Fast Neutrons Oxygen Anomaly Neutron Halo ( 11 Li, 14 Be, 22 C, etc.) 9Li9Li n n 11 Li Stable Proton-rich Neutron-rich neutron number proton number

Invariant Mass Spectroscopy "Mass" measurement of 26 O (Unbound) for study of the Oxygen Anomaly 24 O+n+n E rel (relative energy) 26 O E 24 O n 27 F C target E/A ~250 MeV n 26 O RIBF, RIKEN Neutron Measurement

1. Development of the large acceptance neutron detector "NEBULA" 3. Development of next generation neutron detector "HIME" 2. Evaluation of newly developed simulator

n p 5 Momentum of Neutron n+C, n+H → charged particles ( p, α, etc. ) n (r 0, t 0 ) (r 1, t 1 ) Photomultiplier Tube target Time of Flight (TOF), Position → E, p Plastic scintillator ~10 m n beam tltl trtr t 1 ∝ t l + t r x 1 ∝ t l - t r y 1,z 1 =geo. z x y

Development of NEBULA

360cm 180cm 24cm+24cm SAMURAI Commissioning Experiment in March 2012 NEutron-detection system for Breakup of Unstable-nuclei with Large Acceptance 12cm 180cm a Single Module (NEUT) Neutron Detector "NEBULA" NEUT VETO (distinguish charged particle) wall1 wall2 n x 120 modules ✔ Key Component of spectrometer → evaluation of NEBULA p

SAMURAI Commissioning Experiment 1 n p nat Li ・ Quasi-monoenergetic ・ Single Neutron ・ Cross Section is well known → TOF Resolution, Efficiency p 7 Li(p,n) 7 Be(g.s MeV) 200 MeV (250 MeV) NEBULA SAMURAI Magnet B max =3T, superconducting

Time of Flight Resolution Threshold level = 6 MeVee θ lab < ±40 mrad Counts TOF(measured) - TOF(calculate) (ns) σ TOF =335(5) ps 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total Intrinsic Resolution: σ TOF =263(6) ps All effects not related to NEBULA taken into account cf.) ~300 ps (design value)

Efficiency Counts E n (MeV) 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total 32.3(4) % ~6% correction for neutron flux loss, etc. Intrinsic Efficiency: 34.7±0.4(stat.)±1.0(syst.)% Threshold level = 6 MeVee θ lab < ±40 mrad cf.) 37% Geant4 with INCLXX 40% DEMONS

SAMURAI Commissioning Experiment 2 ・ 2-neutron event → cross-talk rejection C( 14 Be, 12 Be+n+n) 220 MeV/A NEBULA 14 Be n n 12 Be C SAMURAI Magnet B max =3T, superconducting

2-neutron event and Cross-talk event cross-talk event satisfy β 12 < β 01 NEUT VETO wall1 wall2 n p n n n p β 12 β 01 β 02 2-neutron event selection: β 01 /β 12 < 1 → β 12 > β 01 can only be 2-neutron event 2-neutron Cross-talk event 1-neutron

1-Neutron Event Pb( 15 C, 14 C+n) β 01 /β 12 Counts fake 2-neutron Crosstalk 2-Neutron Event C( 14 Be, 12 Be+n+n) β 01 /β 12 Counts 2-neutron Crosstalk (+ 2-neutron) 13% 43% (~2% is fake) (0 MeV < E rel <1 MeV) → ~1/20 contribution

C( 14 Be, 12 Be+n+n) E rel (MeV) β 01 /β 12 preliminary Counts T. Sugimoto et al., Phys. Lett. B 654, 160 (2007) projection to x axis 14 Be (2 + ) is valid cross-talk rejection procedure !! β 01 /β 12 < 1 E n =68 MeV/A 87(5) keV (1σ) 100 keV (1σ)

Development of Simulator

✔ Simulator for neutron detector array is Not established for E n ~ 250 MeV neutron → ・ developed new simulator with Geant4 ・ compare with SAMURAI commissioning data 7 Li(p,n) 7 Be(g.s MeV) ✔ Simulation is Needed for Analysis and Development of Neutron Detector ・ response function ・ acceptance ・ efficiency etc. Development of Simulator (E n =200 MeV)

Evaluation of Simulator INCLXX MENATER Experiment BERT Light Output (MeVee) Counts compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012).

INCLXX gives best agreement Evaluation of Simulator BERT INCLXX MENATER Light Output Threshold (MeVee) Efficiency(sim.) / Efficiency(exp.) w/o 12 C(n,p) 12 B MENATER compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012). Light Output Threshold (MeVee) Efficiency (%) MENATER BERT INCLXX Experiment

Development of HIME

12cm 1.8m 4cm 2cm 1m 1.7m 40cm 10cm NEBULA  y ~5cm,  x =  z ~3.5cm,  t ~0.2ns  E rel =84 keV HIME  x =  y ~1.2cm,  z ~0.6cm,  t ~0.1ns  E rel =40 keV HIgh resolution detector array for Multi-neutron Events Neutron Detector "HIME"

NEBULA β 01 /β 12 < 1 → lose about half of 2-neutron event Cross-talk Rejection Method NEBULA: ε 4n ~0.01%

Cross-talk Rejection Method HIME tracking of recoiled proton calculate the scattered neutron kinematics

Cross-talk Rejection Method z y x Geant4 Simulation n p n p n n n p n p n 2-neutron1-neutron Cross-talk event n p n signal position of one event

y x y x Cross-talk Rejection Method z assume n+p elastic Geant4 Simulation signal position of one event

Cross-talk Rejection Method HIME: ε 4n ~1% (goal) z y x Cross-talk event Geant4 Simulation signal position of one event n p n p n 1-neutron

conclusions ― large acceptance neutron detector NEBULA ― ・ TOF Resolution : 263(6) ps (E n =200 MeV) → achieved the design value ~300 ps ・ Efficiency : 34.7±0.4(stat.)±1.0(syst.)% (E n =200 MeV) → good agreement with newly developed simulator: 37% ・ Cross-talk rejection: β 01 /β 12 < 1 ~1/20 contribution of cross-talk for 14 Be measurement ― next generation neutron detector HIME ― ・ Relative Energy Resolution 40 keV at Erel=1 MeV ・ 2-neutron event selection method is established ― Simulation ― ・ New simulation code reproduce SAMURAI experiment

backup

7 Li(p,n) 7 Be(g.s MeV) Analysis of NEBULA

Time of Flight Resolution E n = 200 MeV Threshold level = 6 MeVee θ lab < ±40 mrad Counts TOF(measured) - TOF(calculate) (ns) σ TOF =335(5) ps 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total σ TOF =263(6) ps (E n = 200 MeV) σ TOF =257(8) ps (E n = 250 MeV) subtract fluctuation of ・ beam velocity ・ time of neutron origin NEBULA's contribution to TOF resolution:

Energy Resolution E n = 200 MeV Threshold level = 6 MeVee θ lab < ±40 mrad Counts / 0.1 ns Energy (MeV) σ E =2.59(4) MeV 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total σ E =2.03(5) MeV (E n = 200 MeV) σ E =3.00(8) MeV (E n = 250 MeV) subtract fluctuation of ・ neutron velocity ・ time of neutron origin

Efficiency E n = 200 MeV Threshold level = 6 MeVee θ lab < ±40 mrad Counts E n (MeV) 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total 34.7(4)% (E n = 200 MeV) 34.3(7)% (E n = 250 MeV) 32.3(4) % according to simulation ~ 6-7% correction need NEBULA's intrinsic efficiency:

26.0(7) 200 MeV → 2.7 %

Efficiency E n = 200 MeV Threshold level = 6 MeVee θ lab < ±40 mrad Counts E n (MeV) 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total 32.3(4) % NEBULA's intrinsic efficiency: count right part of energy dist. → counts full fit procedure → counts 1.5% difference (FWHM)

TOF resolution correction

Efficiency correction 6.9% (E n = 200 MeV) 6.2% (E n = 250 MeV) ~ 6-7% correction ・ neutron flux loss by materials - Li target - neutron window - air between neutron window and NEBULA ・ scattered neutrons ~3%

One-Neutron Event Pb( 15 C, 14 C+n) Two-Neutron Event C( 14 Be, 12 Be+n+n) E rel (MeV) β 01 /β 12 E rel (MeV) β 01 /β 12

One-Neutron Event Pb( 15 C, 14 C+n) Two-Neutron Event C( 14 Be, 12 Be+n+n) β 01 /β 12 Counts (0 MeV < E rel < 100 MeV)

・ MENATE_R (treat each reaction channel) MENATE_R is ported code of neutron detector simulator MENATE written in FORTRAN

BERT, INCLXX (Geant4 built in class) ・ BERT: Bertini Intranuclear Cascade Model (Bertini: H. W. Bertini) - M. P. Guthrie, R. G. Alsmiller and H. W. Bertini, Nucl. Instr. Meth, 66, 1968, widely used ・ INCLXX: INCL++ → c++ version of INCL INCL: Liege Intranuclear Cascade Model (Liege: the Belgian city) - developed and validated against recent data - typical users are from the nuclear physics community studying spallation processes Nuclear Instruments and Methods in Physics Research A 491 (2002) 492–506 model limit ~200 MeV < Ein < ~10 GeV (Journal of Physics: Conference Series 119 (2008) )

DEMONS

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976).

6 MeVee Threshold (MeVee) Efficiency(sim.) / Efficiency(exp.)

Detection Method classical detection technictracking detection NEBULA HIME ― reconstruct momentum by a signal from one module ― reconstruct momentum by a track of recoiled proton → efficient cross-talk rejection for multi-neutron detection HIME: ε 4n ~1% (goal) NEBULA: ε 4n ~0.01%

n p p n p p n n Cross-talk event 2n event n Cross-talk Rejection further simulation is ongoing Geant4 Simulation n

Energy dependence of timing resolution ordinary event tracked event (n>=3) Time Resolution

Geant4 Simulation ordinary event tracked event (n>=3) 8.8% 3.3% 37% 18% Efficiency and E rel Resolution Relative Energy (MeV) Relative Energy Resolution (keV) 40 keV 42 keV improve only ~5% E n (MeV) Efficiency (%) ordinary event tracked event (n>=3) (E n = 250 MeV, 10 m, A=100) High Resolution is already obtained ・ optimization of timing calculation ・ HIME is to small ・ time resolution is already high (100 ps)

Simulated Example HIME NEBULA 12 B  10 Li(1 +,2 + )  9 Li+n Two p-wave states (  p 3/2 )x (p 1/2 )  1 +, 2 + ) should be there! But not yet clarified. (Myo et al. TOSM) 10 Li (1+ and 2+) 10 Li (1+ and 2+) (RIBF exp. E rel ( 9 Li+n)

Experimental Setup-I Measure Timing Resolution, and Absolute Detection in =250MeV 1. Event-by-event setup ・ Low event rate (~380 events/h, Beam 5x10 5 cps)– Use of T0 Detector ・ Accurate beam rate ・ Better T Resolution ( < 0.1ns)

Experimental Setup-II Measure Relative 250 MeV 2. High-Intensity Setup ・ High event rate (T0 detector– Removed) ・ Lower accuracy for beam rate ・ Long TOF (Better E spectrum)

test with cosmic ray is ongoing (will be presented by T. Nakashima) test exp. will be performed at RCNP