Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.

Slides:



Advertisements
Similar presentations
JYFL-Jyväskylä K=130 AVF Cyclotron. JYFL Ion Sources 6.4 GHz ECR 14 GHz ECR Multicusp H - source.
Advertisements

Kurchatov Institute, Moscow
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Author: J R Reid Oxidation and Reduction – Introduction LEO goes GER Examples Balancing simple equations Why gain/lose electrons? Electronegativity.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Down and Up Along the Proton Dripline Heavy One-Proton Emitter Light One-Proton Emitter Light Two-Proton Emitter Heavy Two Proton Emitter.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
The Nature of Molecules
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
Starter For each ion, draw a dot-and-cross diagram and predict the shape and bond angles. H3O+ NH2-
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
CHAPTER 2: The Chemistry of Life BIO 121. Chemistry is relevant… (even if we don’t like it)
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
EURISOL Instrumentation Reaching the drip lines Best way to reach drip lines: fragmentation or in-flight fission e.g. 48 Ni, 100 Sn, 78 Ni etc  fragment.
Trends of the Periodic Table
Ions Wednesday January 8, 2014
Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI Groningen Nuclear structure around 68 Ni J. Van de Walle, N. Kalantar et al. KVI.
1 Beta Counting System Li XiangQing, Jiang DongXing, Hua Hui, Wang EnHong Peking University
Modern Periodic Table Objective:
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Chapter 1 Structure and Bonding.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Teacher Notes This PPT was revised June 10, This PPT is a review on the atomic characteristics of the four main essential elements hydrogen, carbon,
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Relative energy levels of electrons in gaseous atoms of the first twenty elements Increasing energy s p d f 1s Electronic Structure Energy levels within.
Isotope: same element (same #P) different number of neutrons (different mass #) Carbon-12 has 6 protons and 6 neutrons Carbon -14 has 6 protons and.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity.
Atoms, Elements and the Periodic table
S2 SCIENCE CHEMICAL REACTIONS
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
THE TRANSITION METALS.
Chemistry Metals and non metals.
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
KS4 Chemistry The Periodic Table.
Emission of Energy by Atoms and Electron Configurations
THE TRANSITION METALS.
Trends of the Periodic Table
Chemsheets AS006 (Electron arrangement)
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Binary Compounds NaCl sodium chlor ine ide (Na1+ Cl1-) CaS
AQA GCSE Atomic structure and periodic table part 2
Periodic Table of the Elements
Chemsheets AS006 (Electron arrangement)
PERIODIC TABLE OF ELEMENTS
Speed Dating Speed Dating H Na Speed Dating Speed Dating K Be.
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electronic Structure Work through this tutorial in sequence, or go directly to the section required using the links below. Use the ‘home’ button (to.
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Edexcel Topic 1: Key concepts in chemistry
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
Topic 3 - Periodicity 3.1 – Periodic Table .1.
Ionic vs. Covalent Bonding
PPT - Forming Ionic Compounds
The Periodic Table Part I – Categories of Elements
Presentation transcript:

exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission Bertram Blank for the « Limits » sub-task (if there is…)

the region around 100 Sn: predicted rates (200  A): direct: Sn: 6.8 * 10 6 pps Sn: 1.5 * 10 3 pps Sn: 1.1 * pps second fragmentation of 104 Sn (EPAX2): Sn:8.8 * 10 0 pps Sn: 4.4 * pps - 98 Sn: 3.9 * pps Drip line: 95,96 Sn Difficult to reach…. FAIR?

the region around 132 Sn: predicted rates (200  A): direct: Sn: 3.0 * pps In: 5.9 * pps Cd: 1.2 * 10 3 pps Ag: 5.1 * pps second fragmentation of 132 Sn (COFRA): In: 3.8 * 10 8 pps Cd: 4.6 * 10 6 pps Ag: 7.6 * 10 4 pps (last known 127 Ag) Pd: 3.0 * 10 2 pps (last known 123 Pd) Rh: 2.5 * 10 0 pps (last known 121 Rh) Ru: 1.0 * pps (last known 118 Ru) Tc: 3.3 * pps = 3 ppd ( 115 Tc) Drip line (ETFSI): 134 Tc, 118 Kr(N=82)

Can we reach the drip line in the calcium region? Can we compete with 64 Ni or 86 Kr fragmentation? Predicted rates: 70 Ni: 3.0 * 10 5 pps 94 Kr: 2.4 * 10 8 pps 96 Kr:2.9 * 10 6 pps

production of isotopes below 132 Sn - half-life measurements - decay studies (e.g. neutron emission probability) scan the neutron drip line in the calcium region - half-life measurements - test of mass models via 1n or 2n separation energy fragmentation of 132 Sn, 94 Kr, 104 Sn etc to understand fragmentation process of n-rich and p-rich isotopes

Two-proton emitter with even Z

Simultanous emission: three-body decay A~50 region: half-lives long enough due to Coulomb barrier 2 He radioactivity 45 Fe, 48 Ni, 54 Zn, ?… Sequential emission:  -2p decays of 22 Al, 26 P, 31 Ar,… Sequential emission: very light nuclei with broad states

45 Fe 54 Zn 48 Ni

New candidates for the future: 59 Ge 62,63 Se 66,67 Kr 70,71 Sr 74,75 Zr …. What can we learn from two-proton radioactivity: masses of nuclei beyond drip line pairing in nuclei sequence of single-particle levels deformation tunneling process BUT: Is this really a physics topic for an ISOL facility? short half-lives  long extraction times secondary fragmentation  very far from stability

known cases: 22 Al, 23 Si, 26 P, 27 S, 31 Ar, 35 Ca, 39 Ti, 43 Cr, 50 Ni studied cases: 22 Al (a little), 31 Ar (raisonably well) other cases (from the IAS): 22 Si, 42 Cr, 46,47 Fe, 49,50,51 Ni, 55 Zn, 59 Ge, 63 Se, 67 Kr, 71 Sr…. setup: 8  charged-particle detector:

Study of neutron-neutron correlation advantage: no Coulomb barrier no disturbance of correlation cases: 11 Li (4%), 17 B (11%), 17 C (7%), 30,31 Na (1%), 32,33 Na (10%) other cases? cases: 11 Li (3n), 17 B (3n, 4n) other cases? setup: high-granularity neutron detector

search for low-lying resonances in 26,27,28 O 2p knock-out from 28,29,30 Ne isotopes present detectors: - neutron efficiency: 10% for 1n - 26 O is feasible today ( Ne / s) needs: - increased neutron detection efficiency - sweeper magnet to detect heavy ejectile 24 O 1p knock-out to study neutron bound and unbound states in 27,28,29 F needs: - increased neutron detection efficiency - sweeper magnet to detect heavy ejectile 24 O - high-efficiency  -ray detection