Neutron star interiors: are we there yet? Gordon Baym, University of Illinois Workshop on Supernovae and Gamma-Ray Bursts YIPQS Kyoto’ October 28, 2013.

Slides:



Advertisements
Similar presentations
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Advertisements

Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Neutron stars and the properties of matter at high density Gordon Baym, University of Illinois Future Prospects of Hadron Physics at J-PARC and Large Scale.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
Chiral symmetry breaking and structure of quark droplets
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Thomas Klähn D. Blaschke R. Łastowiecki F. Sandin Thomas Klähn – Three Days on Quarkyonic Island.
P460 - Quan. Stats. III1 Nuclei Protons and neutrons in nuclei separately fill their energy levels: 1s, 1p, 1d, 2s, 2p, 2d, 3s…………… (we’ll see in 461 their.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Opportunities for low energy nuclear physics with rare isotope beam 현창호 대구대학교 과학교육학부 2008 년 11 월 14 일 APCTP.
Constraining neutron star properties with perturbative QCD Aleksi Vuorinen University of Helsinki University of Oxford Main reference: Kurkela,
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Neutron stars and quark matter Gordon Baym University of Illinois, Urbana 21 st Century COE Workshop: Strongly Correlated Many-Body Systems from Neutron.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
Quark-Gluon Plasma Sijbo-Jan Holtman.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Neutron Star Strucure from the Quark-Model Baryon-Baryon Interaction Kenji Fukukawa (RCNP, Osaka) Collaborator: M. Baldo, G. F. Burgio, and H.-J. Schulze.
The axial anomaly and the phases of dense QCD
1 Nontopological Soliton in the Polyakov Quark Meson Model Hong Mao ( 毛鸿 ) Department of Physics, Hangzhou Normal University With: Jinshuang Jin ( HZNU.
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Clustered Quark Model Calculation of Strange Quark Matter Xuesen Na Department of Astronomy, School of Physics, PKU CSQCD II.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
Proton Mass and EoS for Compressed Baryonic Matter ATHIC 14/11/12 Mannque Rho (Saclay and Hanyang)
Maximum Mass of Neutron Stars with Hadron-Quark Transient Core □Introduction □Universal 3-body force □Approach by 3-Window Model □Some results
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
Basic hadronic SU(3) model generating a critical end point in a hadronic model revisited including quark degrees of freedom phase diagram – the QH model.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Crossover Workshop ( , 名大) T.Takatsuka (Iwate Univ.) □ Motivations □ New way of approach □ Some results and remarks Equation of state for hadron-quark.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
The nuclear EoS at high density
Lattice QCD at finite temperature Péter Petreczky
Raju Venugopalan Brookhaven National Laboratory
EOS discussion.
Neutron Stars Aree Witoelar.
Aspects of the QCD phase diagram
Color Superconductivity in dense quark matter
Bayesian analysis for hybrid star
Symmetry energy with non-nucleonic degrees of freedom
Hyun Kyu Lee Hanyang University
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Neutron star interiors: are we there yet? Gordon Baym, University of Illinois Workshop on Supernovae and Gamma-Ray Bursts YIPQS Kyoto’ October 28, 2013

Mass ~ M sun Radius ~ km Temperature ~ K Surface gravity ~10 14 that of Earth Surface binding ~ 1/10 mc 2 Density ~ 2x10 14 g/cm 3 Neutron star interior Mountains < 1 mm

Nuclei before neutron drip e - +p n +  makes nuclei neutron rich as electron Fermi energy increases with depth n p+ e - + : not allowed if e - state already occupied _ Beta equilibrium:  n =  p +  e Shell structure (spin-orbit forces) for very neutron rich nuclei? Do N=50, 82 remain magic numbers? Being explored at rare isotope accelerators, RIKEN, GSI, FRIB, KORIA

Valley of  stability in neutron stars neutron drip line

RIKEN, H. Sakurai 2013

No shell effect for Mg(Z=12), Si(14), S(16), Ar(18) at N=20 and 28 Loss of shell structure for N >> Z even

Instability of bcc lattice in the inner crust D. Kobyakov and C. J. Pethick, ArXiv BCC: Lower energy than FCC or simple cubic. Predicted (pre-pasta) Coulomb structure at crust-liquid interface GB, H. A. Bethe, C. J. Pethick, Nucl. Phys. A 175, 225 (1971) But effective finite wavenumber proton-proton interaction strongly modified by screening: k FT = Thomas-Fermi screening length For k > k FT screening by electron less effective. Critical wavenumber above which pp interaction is attractive:

Most unstable direction determined from modification of elastic constants J. Cahn, Acta Metallurgica 10, 179 (1962) Possibly leads to BaTiO 3 -like structure: Similar to pasta phases of nuclei, rearrangement of lattice structure a ffects thermodynamic and transport properties of crust; effects on cooling and glitches, pinning of n vortices, crust bremsstrahlung of neutrinos. Modifies elastic properties of crust (breaking strains, modes,...) affect on precursors of γ-ray bursts in NS mergers, and generation of gravitational radiation.

Pasta Nuclei over half the mass of the crust !! onset when nuclei fill ~ 1/8 of space Lorentz, Pethick and Ravenhall. PRL 70 (1993) 379 Iida, Watanabe and Sato, Prog Theo Phys 106 (2001) 551; 110 (2003) 847 Important effects on crust bremsstrahlung of neutrinos, pinning of n vortices,...

Sonoda, Watanabe, Sato, Yasuoka and Ebisuzaki, Phys. Rev. C77 (2008) QMD simulations of pasta phases T= T>0 Pasta phase diagram

Properties of liquid interior near nuclear matter density Determine N-N potentials from - scattering experiments E<300 MeV - deuteron, 3 body nuclei ( 3 He, 3 H) ex., Paris, Argonne, Urbana 2 body potentials Solve Schrödinger equation by variational techniques Two body potential alone: Underbind 3 H: Exp = MeV, Theory = -7.5 MeV 4 He: Exp = MeV, Theory = MeV Large theoretical extrapolation from low energy laboratory nuclear physics at near nuclear matter density

Importance of 3 body interactions Attractive at low density Repulsive at high density Stiffens equation of state at high density Large uncertainties Various processes that lead to three and higher body intrinsic interactions (not described by iterated nucleon-nucleon interactions).

 0 condensate Energy per nucleon in pure neutron matter Akmal, Pandharipande and Ravenhall, Phys. Rev. C58 (1998) 1804

Akmal, Pandharipande and Ravenhall, 1998 Mass vs. central density Mass vs. radius Maximum neutron star mass Neutron star models using static interactions between nucleons

Equation of state vs. neutron star structure from J. Lattimer

Well beyond nuclear matter density Hyperons: , ,... Meson condensates:  -,  0, K - Quark matter in droplets in bulk Color superconductivity Strange quark matter absolute ground state of matter?? strange quark stars? Onset of new degrees of freedom: mesonic,  ’s, quarks and gluons,... Properties of matter in this extreme regime determine maximum neutron star mass. Large uncertainties!

Hyperons in dense matter Produce hyperon X of baryon no. A and charge eQ when A  n - Q  e > m X (plus interaction corrections).  n = baryon chemical potential and  e = electron chemical potential Ex. Relativistic mean field model w. baryon octet + meson fields, w. input from double-Λ hypernuclei. Bednarek et al., Astron & Astrophys 543 (2012) A157 Y = number fraction vs. baryon density Significant theoretical uncertainties in forces! Hard to reconcile large mass neutron stars with softening of e.o.s due to hyperons -- the hyperon problem. Requires stiff YN interaction.

Accurate for n ~ n 0. n >> n 0 : -can forces be described with static few-body potentials? -Force range ~ 1/2m  => relative importance of 3 (and higher) body forces ~ n/(2m  ) 3 ~ 0.4n fm-3. -No well defined expansion in terms of 2,3,4,...body forces. -Can one even describe system in terms of well-defined ``asymptotic'' laboratory particles? Early percolation of nucleonic volumes! Fundamental limitations of equation of state based on nucleon-nucleon interactions alone:

Lattice gauge theory calculations of equation of state of QGP Not useful yet for realistic chemical potentials

Learning about dense matter from neutron star observations Challenges to nuclear theory!!

High mass neutron star, PSR J in neutron star-white dwarf binary Spin period = 3.15 ms; orbital period = 8.7 day Inclination = 89:17 o ± 0:02 o : edge on M neutron star =1.97 ± 0.04M  ; M white dwarf = ±006M  (Gravitational) Shapiro delay of light from pulsar when passing the companion white dwarf Demorest et al., Nature 467, 1081 (2010); Ozel et al., ApJ 724, L199 (2010).

Second high mass neutron star, PSRJ in neutron star-white dwarf binary Spin period = 39 ms; orbital period = 2.46 hours Inclination =40.2 o M neutron star =2.01 ± 0.04M  ; M white dwarf = ±0.003M  Significant gravitational radiation 400 Myr to coalescence! Antonidas et al., Science (April 26, 2013)

A third high mass neutron star, PSR J in neutron star - flyweight He star binary M neutron star > 2.0 M  ; M companion ~ M  Romani et al., Ap. J. Lett., 760:L36 (2012) Uncertainties arising from internal dynamics of companion

Akmal, Pandharipande and Ravenhall, 1998

M vs R from bursts, Ozel at al, Steiner et al. Mass vs. radius determination of neutron stars in burst sources

J. Poutanan, at Trento workshop on Neutron-rich matter and neutron stars, 30 Sept. 2013

Or perhaps overestimated, since R. Rutledge, at Trento workshop on Neutron-rich matter and neutron stars, 30 Sept. 2013

Phase diagram of equilibrated quark gluon plasma Karsch & Laermann, 2003 Critical point Asakawa-Yazaki st order crossover

Quark matter cores in neutron stars Canonical picture: compare calculations of eqs. of state of hadronic matter and quark matter. Crossing of thermodynamic potentials => first order phase transition. Typically conclude transition at  ~ 10  nm -- would not be reached in neutron stars given observation of high mass PSR J with M = 1.97M  => no quark matter cores ex. nuclear matter using 2 & 3 body interactions, vs. pert. expansion or bag models. Akmal, Pandharipande, Ravenhall 1998

Fukushima & Hatsuda, Rep. Prog. Phys. 74 (2011)

K. Fukushima (IPad)

BEC-BCS crossover in QCD phase diagram Normal Color SC (as m s increases) BCS paired quark matter BCS-BEC crossover Hadrons Hadronic Small quark pairs are “diquarks” GB, T.Hatsuda, M.Tachibana, & Yamamoto. J. Phys. G: Nucl. Part. 35 (2008) H. Abuki, GB, T. Hatsuda, & N. Yamamoto,Phys. Rev. D81, (2010)

Continuous evolution from nuclear to quark matter K. Masuda, T. Hatsuda, & T. Takatsuka, Ap. J.764, 12 (2013)

Hadron-quark crossover equation of state K. Masuda, T. Hatsuda, &T. Takatsuka, Ap. J.764, 12 (2013) Neutron matter at low density with smooth interpolation to Nambu Jona-Lasinino model of quark matter at high density quark content vs. density E.o.s. with interpolation between 2 - 4

Model calculations of phase diagram with axial anomaly, pairing, chiral symmetry breaking & confinement NJL alone: H. Abuki, GB, T. Hatsuda, & N. Yamamoto, PR D81, (2010). NPL with Polyakov loop description of confinement: P. Powell & GB PR D 85, (2012) Couple quark fields together with effective 4 and 6 quark interactions: At mean field level, effective couplings of chiral field φ and pairing field d: K and K’ from axial anomaly PNJL phase diagram

Model calculations of neutron star matter and neutron stars within NJL model NJL Lagrangian supplemented with universal repulsive quark-quark vector coupling K. Masuda, T. Hatsuda, & T. Takatsuka, Ap. J.764, 12 (2013) GB, T. Hatsuda, P. Powell,... (to be published) Include up, down, and strange quarks with realistic masses and spatially uniform pairing wave functions Smoothly interpolate from nucleonic equation of state (APR) to quark equation of state: pressure baryon density mass density

Neutron star equation of state vs. phenomenological fits to observed masses and radii Lines from bottom to top: g V /G = 0, 1, 1.5, 5 Cross-hatched region = Ozel et al. (2010) Shaded region = Steiner et al. (2010)

Masses and radii of neutron stars vs. central mass density from integrating the TOV equation g v /G= Mass vs. central density: only stars on rising curves are stable M vs. R: only stars on rapidly rising curves are stable

Maximum neutron star mass vs. g V PNJL accomodates large mass neutron stars as well as strange quarks -- avoiding the “hyperon problem” -- and is consistent with observed masses and radiii

But we are not quite there yet: Uncertainties in interpolating from nuclear matter to quark matter lead to errors in maximum neutron star masses and radii. Uncertainties in the vector coupling g v The NJL model does not treat gluon effects well, which leads to uncertainties in the “bag constant” B of quark matter: At very high baryon density, the energy density is E = B + Cp f 4, with B ~ MeV/fm 3. Then the pressure is P = -B + Cp f 4 /3. Effect of B on maximum neutron star mass? Need to calculate gluon contributions accurately to pin down B.

どうもありがとう