Procedural and interactive icicle modeling Jonathan Gagnon Eric Paquette.

Slides:



Advertisements
Similar presentations
Associazione EURATOM ENEA sulla FUSIONE CONSEN A COMPUTER PROGRAM FOR TRANSIENT SIMULATION OF ENERGY AND MASS TRANSFER BETWEEN INTERCONNECTED VOLUMES DEVELOPED.
Advertisements

Complexity Metrics for Design & Manufacturability Analysis
Using DEM-CFD method to model colloids aggregation and deposition
Outline Overview of Pipe Flow CFD Process ANSYS Workbench
A Prediction-Correction Approach for Stable SPH Fluid Simulation from Liquid to Rigid François Dagenais Jonathan Gagnon Eric Paquette.
Real-Time Dynamic Wrinkles Caroline Larboulette Marie-Paule Cani GRAVIR Lab, Grenoble, France.
The best collimator configuration (material, number of collimators, collimator shape) is determined by minimizing the ratio R, where N ae is the number.
MODELLING OF CAVITATION FLOW IN A DIESEL INJECTION NOZZLE S. Martynov 1, D. Mason 2, M. Heikal 2 1 Department of Mechanical Engineering, University College.
Surface Aging by Impacts E. Paquette 1,2, P. Poulin 1, G. Drettakis 2 1 Université de Montréal 2 iMAGIS/GRAVIR-REVES-INRIA.
Thermal structure of old continental lithosphere from the inversion of surface-wave dispersion with thermodynamic a-priori constraints N. Shapiro, M. Ritzwoller,
C ROWD P ATCHES : P OPULATING L ARGE - S CALE V IRTUAL E NVIRONMENTS FOR R EAL -T IME A PPLICATIONS Barbara Yersin, Jonathan Maïm, Julien Pettré, Daniel.
Hokkaido University Efficient Rendering of Lightning Taking into Account Scattering Effects due to Clouds and Atmospheric Particles Tsuyoshi Yamamoto Tomoyuki.
Physics of fusion power Lecture 11: Diagnostics / heating.
VADE - Virtual Assembly Design Environment Virtual Reality & Computer Integrated Manufacturing Lab.
Interfacial transport So far, we have considered size and motion of particles In above, did not consider formation of particles or transport of matter.
A Lagrangian approach to droplet condensation in turbulent clouds Rutger IJzermans, Michael W. Reeks School of Mechanical & Systems Engineering Newcastle.
Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere W. Scales, J. Wang, C. Chang Center for Space Science.
Laser Treatment Modeling Capabilities at Rensselaer-Hartford Ernesto Gutierrez-Miravete Rensselaer at Hartford
University of South Carolina FCR Laboratory Dept. of Chemical Engineering By W. K. Lee, S. Shimpalee, J. Glandt and J. W. Van Zee Fuel Cell Research Laboratory.
Modeling Fluid Phenomena -Vinay Bondhugula (25 th & 27 th April 2006)
Motion of Fluid Particles, An Essential Need of Humans…… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Kinematics of Viscous.
Convergence of vision and graphics Jitendra Malik University of California at Berkeley Jitendra Malik University of California at Berkeley.
SIMULATION. Simulation Definition of Simulation Simulation Methodology Proposing a New Experiment Considerations When Using Computer Models Types of Simulations.
Brookhaven Science Associates U.S. Department of Energy Neutrino Factory / Muon Collider Collaboration Meeting March 17-19, 2008, FNAL, Batavia, IL Target.
A Simple, Efficient Method for Realistic Animation of Clouds
Aeronautics & Astronautics Autonomous Flight Systems Laboratory All slides and material copyright of University of Washington Autonomous Flight Systems.
Blood effects for Flinders Sinus Surgery Simulator
© 2011 Autodesk Simplified 5-Axis Machining Ann Mazakas Manager of Technical Communications | DP Technology Corp.
Modeling and representation 1 – comparative review and polygon mesh models 2.1 Introduction 2.2 Polygonal representation of three-dimensional objects 2.3.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
Wind Modeling Studies by Dr. Xu at Tennessee State University
Using synthetic turbulence as an inlet condition for large eddy simulations Thomas P. Lloyd 1,2*, Stephen R. Turnock 1 and Victor F. Humphrey 2 1 Fluid.
Ioannis Karamouzas, Roland Geraerts, Mark Overmars Indicative Routes for Path Planning and Crowd Simulation.
1 Three dimensional mosaics with variable- sized tiles Visual Comput 2008 報告者 : 丁琨桓.
* University of Mining and Metallurgy, AGH Cracow Experimental and Numerical Investigations of Buoyancy Driven Instability in a Vertical Cylinder Tomasz.
Simulation of Droplet Drawback in Inkjet Printing
9/23/2015 KITPC - Membrane Biophysics 1 Modeling of Actomyosin Driven Cell Oscillations Xiaoqiang Wang Florida State Univ.
Interactive Virtual Relighting and Remodelling of Real Scenes C. Loscos 1, MC. Frasson 1,2,G. Drettakis 1, B. Walter 1, X. Granier 1, P. Poulin 2 (1) iMAGIS*
Algebraic geometric nd geometric modeling 2006 Approximating Clothoids by Bezier curves Algebraic geometric and geometric modeling, September 2006, Barcelona.
Computer animation Hair “A Survey on Hair Modeling: Styling, Simulation, and Rendering,” K. Ward, F. Bertails, T.-Y. Kim S. Marschner, M.-P. Cani, M. Lin.
Interactive Rendering of Meso-structure Surface Details using Semi-transparent 3D Textures Vision, Modeling, Visualization Erlangen, Germany November 16-18,
Brookhaven Science Associates U.S. Department of Energy MUTAC Review April , 2004, LBNL Target Simulation Roman Samulyak, in collaboration with.
CFD Pre-Lab 2 Simulation of Turbulent Flow around an Airfoil Seong Mo Yeon, and Timur Dogan 11/12/2013.
GPU-Accelerated Surface Denoising and Morphing with LBM Scheme Ye Zhao Kent State University, Ohio.
Detail-Preserving Fluid Control N. Th ű rey R. Keiser M. Pauly U. R ű de SCA 2006.
Wet Stack Fine Particulate Method/CEMS Development Measurement Technology Workshop January 29, 2013.
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
civil engineer Engineers who design public works such as roads and bridges.
A Computationally Efficient Framework for Modeling Soft Body Impact Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories.
Silesian University of Technology in Gliwice Inverse approach for identification of the shrinkage gap thermal resistance in continuous casting of metals.
Bryan Willimon IROS 2011 San Francisco, California Model for Unfolding Laundry using Interactive Perception.
Yoshinori Dobashi (Hokkaido University) Yusuke Shinzo (Hokkaido University) Tsuyoshi Yamamoto (Hokkaido University) Modeling of Clouds from a Single Photograph.
Adaptive Tracking in Distributed Wireless Sensor Networks Lizhi Yang, Chuan Feng, Jerzy W. Rozenblit, Haiyan Qiao The University of Arizona Electrical.
Particle-based Viscoelastic Fluid Simulation Simon Clavet Philippe Beaudoin Pierre Poulin LIGUM, Université de Montréal.
Relativistic MHD Simulations of jets Relativistic MHD Simulations of jets Abstract We have performed 3D RMHD simulations to investigate the stability and.
Lecture Objectives: Review discretization methods for advection diffusion equation –Accuracy –Numerical Stability Unsteady-state CFD –Explicit vs. Implicit.
Institute of computational technologies SB RAS Novosibirsk, Russia Beisel S., Chubarov L., Khudyakova V., Shokin Yu.
T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 T. Hellsten 1, T. Bergkvist 1, T.Johnson 1, M. Laxåback 1 and L.-G. Eriksson 2 1 Euratom-VR.
Active Walker Model for Bacterial Colonies: Pattern Formation and Growth Competition Shane Stafford Yan Li.
Best detection scheme achieves 100% hit detection with
SIGGRAPH 2005 신 승 호 신 승 호. Water Drops on Surfaces Huamin Wang Peter J. Mucha Greg Turk Georgia Institute of Technology.
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
Master : Jun-Hao Chen Advisor : Dr. Hsin-Chih Lin Date : 2007/11/13 Computer-Generated Chinese Color Ink Paintings Journal of the Chinese Institute of.
Contact Resistance Modeling in HEMT Devices
Computer Graphics.
Yenn-Jiang Lin et al. JACEP 2016;2:
Water Droplet Simulation
From: Modeling of Particle-Laden Cold Flow in a Cyclone Gasifier
Connecting Catalytic Chemistry to External Particle Conditions via CFD Anthony G. Dixon, Department of Chemical Engineering, Worcester Polytechnic Institute.
Procedural Animation Lecture 11: Fluid dynamics
Presentation transcript:

Procedural and interactive icicle modeling Jonathan Gagnon Eric Paquette

Icy challenges Goal – Control – Fast computation 2 J. Gagnon & E. Paquette photograph

Overview 1.Previous work 2.Proposed approach 3.Results 4.Limitations & Conclusion 3 J. Gagnon & E. Paquette

Overview 1.Previous work 2.Proposed approach 3.Results 4.Limitations & Conclusion 4 J. Gagnon & E. Paquette

Previous work: Frost Microdroplets Kim et al – Phase field Kim et al. 2004a – Phase field, DLA, fluid simulation – Realistic – No volume 5 J. Gagnon & E. Paquette

Previous work: Glaciology Makkonen 1988 – Growth vectors – Convection and conduction Maneo et al – Dentritic growth Szilder et Lozowski 1994 – Predict the form 6 J. Gagnon & E. Paquette

Previous work: Computer Graphics Kharitonsky et Gonczarowski 1993 – Surface tension, tendency of water drop to follow a wet path. Kim et al – Stephan problem Problems – Control – Computation time 7 J. Gagnon & E. Paquette

Overview 1.Previous work 2.Proposed approach 3.Results 4.Limitations & Conclusion 8 J. Gagnon & E. Paquette

Procedural icicle modeling 9 J. Gagnon & E. Paquette

Procedural icicle modeling 10 J. Gagnon & E. Paquette

Water Coefficients Goal – Compute the water flow Steps – Compute the water supply – Compute the water coefficient J. Gagnon & E. Paquette 11

Water Supply Source surface J. Gagnon & E. Paquette 12 Scatter & Ray-trace

Water Supply J. Gagnon & E. Paquette 13

Water Flow J. Gagnon & E. Paquette 14 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 15 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 16 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 17 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 18 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 19 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 20 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 21 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 22 Compute the water coefficient

Water Flow J. Gagnon & E. Paquette 23 Compute the water coefficient

Water Flow Compute the water coefficient J. Gagnon & E. Paquette 24

J. Gagnon & E. Paquette 25

Water Coefficients J. Gagnon & E. Paquette 26

Water Coefficients Works well with several surfaces J. Gagnon & E. Paquette 27

Procedural icicle modeling 28 J. Gagnon & E. Paquette

Drip points identification Goal – Find were the water drips Steps – Find drip region – Place drip points J. Gagnon & E. Paquette 29

Drip Criterion J. Gagnon & E. Paquette 30

Drip region J. Gagnon & E. Paquette 31

Drip points J. Gagnon & E. Paquette 32 Randomly distributed on the drip region

Procedural icicle modeling 33 J. Gagnon & E. Paquette

Icicles’ trajectories Goal – Create a guide for each icicle Previzualisation Interactive modification – Simulate different icicle types Straight Curved Divided J. Gagnon & E. Paquette 34

Icicles’ trajectories L-System J. Gagnon & E. Paquette 35

L-System J. Gagnon & E. Paquette 36

Broad range of results J. Gagnon & E. Paquette 37

Collision handling J. Gagnon & E. Paquette 38

Procedural icicle modeling 39 J. Gagnon & E. Paquette

Surface creation Goal – Create a photorealistic icicle mesh – Provide configurable surface – Manage fusion between icicles – Attach the icicle to the surface J. Gagnon & E. Paquette 40

Surface creation Methodology – Profile function – Icicle’s base function – Glaze ice function J. Gagnon & E. Paquette 41

Surface creation Methodology – Profile function – Icicle’s base function – Glaze ice function J. Gagnon & E. Paquette 42

Profile function J. Gagnon & E. Paquette 43

Profile function J. Gagnon & E. Paquette 44

Profile function { J. Gagnon & E. Paquette 45 {

Profile function J. Gagnon & E. Paquette 46

Implicit surface modeling Using metaballs Radius is defined by the profile function Positionned along the trajectory J. Gagnon & E. Paquette 47

Surface creation: results J. Gagnon & E. Paquette 48

Real vs generated J. Gagnon & E. Paquette 49

Surface creation Methodology – Profile function – Icicle’s base function – Glaze ice function J. Gagnon & E. Paquette 50

Icicle’s base J. Gagnon & E. Paquette 51

Icicle’s base J. Gagnon & E. Paquette 52

Icicle’s base Modeled with metaballs Radius function J. Gagnon & E. Paquette 53

Icicle’s base: Results J. Gagnon & E. Paquette 54

Surface creation Methodology – Profile function – Icicle’s base function – Glaze ice function J. Gagnon & E. Paquette 55

Three type of solidification J. Gagnon & E. Paquette 56 Glaze ice

J. Gagnon & E. Paquette 57

Glaze ice: Results J. Gagnon & E. Paquette 58

Overview 1.Previous work 2.Proposed approach 3.Results 4.Limitations & Conclusion 59 J. Gagnon & E. Paquette

Results J. Gagnon & E. Paquette 60 Video

L. Leblanc, J. Houle and P. Poulin Modeling with Blocks, CGI J. Gagnon & E. Paquette 61

Results statistics J. Gagnon & E. Paquette 62 FiguresTeapotFountainBuddhaBunnyArmadilloDragonTree Number of icicles Computation times (seconds) Water coefficients Drip points Trajectories Surface modeling Total time

Overview 1.Previous work 2.Proposed approach 3.Results 4.Limitations & Conclusion 63 J. Gagnon & E. Paquette

Limitations Not physically accurate Implicit surface modeling is slow Rendering is slow J. Gagnon & E. Paquette 64

Conclusion J. Gagnon & E. Paquette 65 Control L-System to generate several icicle types Functions for ice thickness Interactivity Computation rearranged in four phases Fast computation of flow and trajectories

Questions J. Gagnon & E. Paquette 66

Curvature angle c J. Gagnon & E. Paquette 67

Dispersion angle au J. Gagnon & E. Paquette 68 a = au x 137.5˚/360 ˚