K.U. Leuven HIE ISOLDE: opportunities, challenges and importance Piet Van Duppen Instituut voor Kern- en Stralingsfysica K.U.Leuven, Belgium - Importance:

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

ISAC Physics Working Group Convenors Malcolm Butler and Barry Davids.
Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven Huelva 09/11/2011 IntroductionREX-ISOLDEResultsThe future Transfer reactions at ISOLDE:
SYNTHESIS OF SUPER HEAVY ELEMENTS
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Coulomb excitation with radioactive ion beams
MINIBALL g-ray Spectroscopy far from Stability
University of Liverpool
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Doctoral Defense of Barak Hadina 18 th January 2008 In-Beam Study of Extremely Neutron Deficient Nuclei Using the Recoil Decay Tagging Technique Opponent:
ISCC 24 May 2004L.M. Fraile L.M. Fraile, CERN PH/IS ISOLDE scientific coordinator’s report ISOLDE Collaboration Committee 24 th May 2004 ISOLDE scientific.
UNIVERSITY OF JYVÄSKYLÄ Results from the first tests with the SPEDE spectrometer Philippos Papadakis ISOLDE Workshop and Users Meeting 2014.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Nuclear physics input to astrophysics: e.g.  Nuclear structure: Masses, decay half lives, level properties, GT strengths, shell closures etc.  Reaction.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Reiner Krücken - Yale University Reiner Krücken Wright Nuclear Structure Laboratory Yale University Why do we measure lifetimes ? The recoil-distance method.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
1 Nuclear physics and Astrophysics at CERN (10/10-13/2005) Nuclear Physics and Astrophysics at CERN Details of physics interests and methods for studies.
Nuclear structure investigations in the future. J. Jolie, Universität zu Köln.
K.U. Leuven Future Physics with EURISOL Piet Van Duppen Instituut voor Kern- en Stralingsfysica K.U. Leuven, Belgium EURISOL town meeting CERN, Geneva,
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Experimental achievements and outlook (only a few examples to illustrate the achievements and to paint the “road map” for the future) Extreme proton-to-neutron.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
The Belgian Research Initiative on eXotic nuclei – BriX network BriX Days Liege, May 27-28, 2015 Funded by the Interuniversity Attraction Poles Programme.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
New Opportunities with HIE ISOLDE Piet Van Duppen KU Leuven, Belgium Introduction: Radioactive Ion Beam (RIB) physics: key questions HIE ISOLDE opportunities.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
1 Beta Counting System Li XiangQing, Jiang DongXing, Hua Hui, Wang EnHong Peking University
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
European Isotope Separation On-Line Radioactive Nuclear Beam Facility A preliminary design study of the next- generation European ISOL RNB facility GANIL,
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
UK Research in Nuclear Physics P J Nolan University of Liverpool.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Fusion of light halo nuclei
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Summary: Physics Opportunities for ISOLDE and n_TOF Peter Butler.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Technical solutions for N=Z Physics David Jenkins.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
How can one produce rare isotopes? Question Slid 3 Hendrik Schatz NNPSS 2012, Slide 3 Rare Isotope Production Techniques: Uniqueness of FRIB Target spallation.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Future Physics at EURISOL Peter Butler. Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u.
Current topics in Nuclear Structure
Emmanuel Clément IN2P3/GANIL – Caen France
Coupling of germanium detectors to the ISS
Studies of Pear Shaped Nuclei using rare isotope beams
Presentation transcript:

K.U. Leuven HIE ISOLDE: opportunities, challenges and importance Piet Van Duppen Instituut voor Kern- en Stralingsfysica K.U.Leuven, Belgium - Importance: key questions key questions in nuclear physics, nuclear astrophysics, fundamental interactions and condensed matter - Challenges: Radioactive Ion Beams experiments with Radioactive Ion Beams to answer these questions - Opportunities: HIE-ISOLDE HIE-ISOLDE - new and higher quality beams, higher energy

K.U. Leuven Known Nuclei (2006) Bound Nuclei Magic Numbers Evolution of Shell Structure Weak Binding N>>Z Diffuse Surfaces Ab Intitio Calculations Halos and Skins Isospin Symmetry Pairing Exotic decays Shape coexistence Specific radioactive probes for solid- state and bio-medical studies HIE – ISOLDE: challenges Research with Radioactive Isotopes Decay and laser-spectroscopy Moments and mass measurements Solid-state physics experiments Coulomb excitation Transfer reactions Heavy-ion fusion reactions r-process and r-p process

K.U. Leuven ENERGY: Energy upgrade to 10 MeV/u and lower energy capacity INTENSITY: ISOLDE proton driver beam intensity upgrade strongly linked to PS Booster improvements including linac4 QUALITY: ISOLDE radioactive ion beam quality: broader spectrum and higher quality (purity, emittance, time structure) HIE – ISOLDE: technical options (see talk M. Lindroos) HIE – ISOLDE: opportunities Wide spectrum of radioactive ion beams Wide energy range: from rest to 10 MeV/u Pure beams occupying a small phase space: allows for low-intensity RIB experiments Isomeric beams: nuclear spin degree of freedom Intensity and quality upgrade and the extended variety of beams will create new opportunities to the current research programs (cfr. K. Riisager) higher energy capabilities This presentation mainly focuses on the higher energy capabilities

K.U. Leuven 2. Evolution of Shell Structure 1. Testing Ab-Initio Calculations - Halos and Skins 4. Exotic decays 3. Shape coexistence 5. Nuclear Astrophyscis 6. Solid-State Physics HIE – ISOLDE: opportunities Fundamental Interactions: N. Severijns, M. Kowalska, M. Scheck ID 45, 52, 59, 66, 67, 69, 85 Atomic physics: ID 93 Bio-medical and medical applications: ID 44

K.U. Leuven RMS Radii of nuclei cfr. 11 Li, 9,10 Be (abstract ID 96) (W. Nörtershäuser et al. Phys. Rev. Lett. 102 (2009) ) Nuclear Moments cfr. 9,11 Li (ID 20) (R. Neugart et al., Phys. Rev. Lett. 101 (2008) ) Electroweak Matrix Elements Transfer reactions 9 He unbound 10 He unbound 9 Li 179 ms 10 Li unbound 12 Be 23.6 ms 9 B unbound 10 B 11 B 12 B ms 12 Li unbound 9 C 125 ms 10 C 19.3 s 11 C 20.4 m 11 Li 8.5 ms 9 Be 10 Be y 11 Be 13.8 s 12 C 12 N 11 ms 11 N unbound 12 O unbound N Z 1. Testing Ab-Initio Calculations

K.U. Leuven E ex ( 9 Li) MeV MeV 5.38 MeV IS446 REX-ISOLDE d( 8 Li, 9 Li)p MeV/u, ~10 5 /s Tengborn et al. d( 9 Li, 10 Li)p MeV/u, ~10 5 /s Kirsebom et al. Transfer reactions Reaction studies with He beams: 4 He( 6 He, 4 He) 6 LLN R. Raabe et al.., Phys. Lett. B458, 1 (1999) p( 8 He,d) 7 SPIRAL-GANIL F. Skaza et al., Phys. Rev. C 73, (2006) 12 C( 8 He, 7 H-> 3 H+4n) 13 SPIRAL-GANIL M. Caamaño et al., Phys. Rev. Lett. 99, (2007) Reaction studies with Li beams: d( 8 Li, 9 ANL: A. Wuosmaa et al. Phys. Rev. Lett. 94, (2005)

K.U. Leuven I. Tanihata et al. PRL 100, (2008) 11,9 Li Two neutron removal reaction: p( 11 Li, 9 Li)t 30% s 2 Triumf 11 Li beam Active target - GANIL (see talk R. Raabe ID 75)

K.U. Leuven Mark Huyse IS470: Kathrin Wimmer Two-neutron transfer reactions : radioactive beam onto a radioactive target 3 H( 30 Mg, 32 Mg) 1 H Si barrel detector MINIBALL germanium detector

K.U. Leuven 1. Test of Ab-Initio calculations – Halos and Skins Study properties of bound and un-bound states in light-mass(halo) nuclei – open quantum systems HIE-ISOLDE opportunities Transfer reactions using heavier beams (A>8): 3 H( 9 Li,p) 11 Li, 3 H( 12 Be,p) 14 Be and heavier masses (C, N and O) Higher energy (Q-value, higher cross sections, thicker targets, better angular momentum sensitivity, less model dependent analysis) and higher intensity Using active targets (also in the heavier mass region e.g. nickel and lead (see talk R. Raabe ID 75) Charge radii and moments (laser spectroscopy) (ID 22, 96) Decay studies using calorimetric detectors (ID89)

K.U. Leuven Otsuka et al. Phys Rev Lett 95 (2005) Evolution of Shell Structure Dobaczewski et al. Phys Rev Lett 72 (1994) 981

K.U. Leuven Measurements of one-neutron transfer on stable nuclei outside N=82 Kay et al. Phys. Lett. B658 (2008) 216 Evolution of Shell Structure studied with transfer reactions Expect turnaround in trend, if tensor force drives changes, for higher Z. radioactive beams with high yields: 132 Sn, 134 Te radioactive beams unique to ISOLDE with high yields: 146 Gd, 148 Dy, 150 Er Testing outside Z=50 using beams of n-deficient Sn isotopes Testing outside N=126 using beams like 206 Hg, 210 Po, 212 Rn and 214 Ra Recent studies in the Sb region using Sn( ,t) Schiffer et al. Phys Rev Lett 92 (2004)

K.U. Leuven Transfer reactions need higher energy W.N. Catford, Surrey Evolution of shell structure studied with transfer reactions

K.U. Leuven 2. Evolution of Shell Structure Identify energy gaps, spin, parity and the single-particle strength outside an inert core HIE-ISOLDE opportunities Transfer reactions requires higher energy ( MeV/u) for adequate cross sections, angular momentum-transfer assignments and minimise dependency on reaction models (ID 33) Few-nucleon transfer reactions: production and study of medium spin states (ID 14) Wide spectrum of RIB available: study trend along closed proton/neutron shells Higher intensity allows decay, mass measurement and laser spectroscopy studies towards the neutron and proton drip lines (see talk K. Flanagan-ID 7, M. Kowalska-ID 85 and ID 20, 31, 53)

K.U. Leuven 3. Shape co-existence in the lead region H. De Witte et al. PRL 98 (2007) Shape staggering Onset of deformation Mean square charge radii A.N. Andreyev et al., Nature 405, 430 (2000) 186 Pb 104 Potential energy surface

K.U. Leuven Strongly-coupled matrix elements Band mixing Sign, magnitude of deformation Shape co-existence in the lead region studied with Coulomb excitation Nick Bree, Andrew Petts et al Energy (keV) Coulomb 3 MeV/u 184 Hg (3MeV/u) Cd

K.U. Leuven 4.7 MeV/u 74 Kr radioactive beam - SPIRAL 74 Kr Clément et al. Phys. Rev C75 (2007)

K.U. Leuven One-neutron transfer: 2 H( 184 Hg,p) 185 Hg, 2 H( 183m,g Hg,p) 184 Hg isomeric and other Pb, Po and Rn (isomeric) beams Shape co-existence studied with transfer reactions Two-proton transfer: 3 He( 184 Hg,n) 186 Pb Shape staggering I. Stefanescu et al., PRL98 (2007)

K.U. Leuven 3. Shape co-existence Coulex populates states strongly coupled to g.s. (e.g. non-yrast states) Distinction between prolate and oblate deformation Identify the microscopic (particle-hole) origin of shape-coexistence Determine the degree of collectivity and mixing Test of local symmetries HIE-ISOLDE opportunities Higher energy: Coulex: higher yields, multiple Coulex, higher sensitivity to the sign of Q Transfer: : higher sensitivity to angular momentum transfer, less model dependent spectroscopic factors (ANC’s), better detection sensitivity Wide spectrum of RIB available: pin down N,Z specific aspects of shape co- existence (ID 6, 18, 62, 74, 83) Higher intensity: possibility to study weak reaction channels Isomeric beams: investigate underlying particle mechanism

K.U. Leuven D. Neidherr et al. Phys. Rev. Lett. 102 (2009) Discovery of 229 Rn and the Structure of the Heaviest Rn and Ra Isotopes from Penning-Trap Mass Measurements systematic deviation from the general trend of  V pn values, probably induced by the octupole deformation. HIE-ISOLDE opportunities Higher intensities: extended range of nuclei (cfr. talk M. Kowalska ID 85, M. Scheck ID52)

K.U. Leuven B f,i B f,e Spontaneous fission EC/  +  DF          a A.N. Andreyev et al. 4. Rare charge-particle decay studies Fission of 180 Hg observed in the beta decay of 180 Tl Unexpected asymmetric mass split ( 180 Hg ( Z=80, N=100 ) = 2 x 90 Zr ( Z=40, N=50 ) Cold fission, important for the end of the r-process HIE-ISOLDE opportunities Higher intensities, other nuclei Higher energy: implantation – decay (absolute branching ratios) (ID 89) Beta delayed fission

K.U. Leuven Dominated by (p,  ) and ( ,p) reactions - Direct (p,  ) or ( 3 He,d)/(d,n) as surrogate of (p,  ) - (p,  ) as inverse of ( ,p) X-ray bursts (rp-process) Dominated by (n,  ) reactions - r-process pathway largely unknown - understanding of shell evolution important (d,p) as surrogate of (n,  ) (J. Cizewski et al. NIMB 261 (2007) 938) Supernovae (r-process) 5. Nuclear Astrophysics measure global properties such as mass and lifetime very far from stability

K.U. Leuven Louvain-la-Neuve, Triumf

K.U. Leuven 424 Successful pioneering study of time reverse 17 F(p,α) 14 O reaction IS424 HIE-ISOLDE opportunities Tunable energy to apply time reverse technique to other X-ray busters reactions Wide spectrum of RIB available Mass measurements, half life determinations: need for higher intensities MINIBALL CD detector

K.U. Leuven 6. Solid-state physics How do minor impurities or defects influence the electrical and optical properties of different materials (e.g. in semiconductors, metals, oxides, high-Tc superconductors)? (the chemical nature and the structure of defects and the interaction between defects) Low energy beams (PAC, DLTS, Mossbauer, surface studies, emission channeling) see talks U. Wahl ID 63, L. Hemmingsen ID 90, 64, 86, 88, 94, 96  -NMR with tilted-foil polarization also applicable for nuclear physics experiments (see talk G. Georgiev ID 65) Diffusion in highly immiscible systems

K.U. Leuven HIE-ISOLDE: instrumentation for reactions Existing equipement: MINIBALL segmented germanium detector array: Coulex, transfer, multi-nucleon transfer Silicon barrel detector and multi silicon detector system: transfer reactions Prototype / design / preliminary study phase: Bragg detector: Coulex Separator: identification of the reaction products High resolution spectrometer: (p,d), (t,p), ( ,p),… Active target: direct reactions Under study: Neutron wall detector: ( 3 He,n),…

K.U. Leuven ReactionPhysicsOptimum energy (d,p), ( 3 He,  ), ( 3 He,d), (d,n),… transfer Single-particle configurations, r- and rp-process for nucleosynthesis 10 MeV/u ( 3 He,p), (d,  ), (p,t), (t,p) pairing5-10 MeV/u Few-nucleon transfer Structure of neutron-rich nuclei8 MeV/u Unsafe Coulomb excitation High-lying collective states6-8 MeV/u Compound nucleus reactions Exotic structure at drip line5 MeV/u Coulomb excitation, g-factor measurements Nuclear collectivity and single- particle aspects 3-5 MeV/u (p,p’  ), (p,  ), … nucleosynthesis2-5 MeV/u HIE-ISOLDE opportunities: higher energy

K.U. Leuven HIE-ISOLDE: uniqueness Large RIB beam variety: spallation, fission, fragmentation Universal acceleration scheme (REX-trap, EBIS) High quality beams: cooled and clean beams, isomeric beams Instrumentation: Penning traps, laser labs, silicon ball, MINIBALL detector, … spallation fragmentation fission

K.U. Leuven Many thanks to: P. Butler, Y. Blumenfeld, H. Fynbo, A. Goergen, M. Huyse, K. Riisager, N. Severijns, L. Hemmingsen, V. Amaral, U. Wahl, HIE-ISOLDE: importance, challenges and opportunities NZ,energy A unique facility for ISOL based radioactive ion beam research because of its large degrees of freedom in N and Z, in energy and in (to a certain extent) nuclear and atomic spin. its wide spectrum of isotopes broad energy range high beam intensities and high beam quality Its aim is to answer important questions in nuclear-structure physics nuclear astrophysics fundamental interaction studies condensed matter research atomic physics

K.U. Leuven

driver accelerator In-Flight Isotope Separator On Line (ISOL) thin target fragment separator storage ring ss 50 MeV/u to 1 GeV/u experiments detectors spectrometers... high-temperature thick target ion source mass separator post accelerator ~ ms to s meV 100 MeV/u heavy ions -fusion -fragmentation -fission light & heavy ions, neutrons, electrons -spallation -fission -fragmentation Radioactive Ion Beams: In-Flight versus ISOL

K.U. Leuven Coulomb excitation populates odd and even- even Radon and Radium with N~134 See talk M. Scheck ID Octupole shapes and the Standard Model

K.U. Leuven Tests of CP invariance in hadronic sector from static Electric Dipole Moment (EDM) of atom (best limits so far from 199 Hg on M.V. Romalis et al., PRL 86 (2001) 2505 Expect enhancement (by 10 2 ) of EDM in octupole radioactive nuclei, e.g. 223 Rn, 225 Ra Dobaczewski and Engel,Phys. Rev. Lett. 94 (2005) L.I. Schiff, Phys. Rev. 132 (1963) 2194 Schiff moment parity doublet octupole deformation Schiff moment is the quantity responsible for inducing an EDM in the electrons orbiting the nucleus: 4. Octupole shapes and the Standard Model HIE-ISOLDE opportunities High intensities, heavy isotopes Atomic parity violation studies (e.g. Ra): (ID 45)