Plan for Korea Rare Isotope Accelerator (KoRIA*) Byungsik Hong (Korea University) October 31, 20091Heavy-Ion Meeting Outline - Introduction - Physics topics.

Slides:



Advertisements
Similar presentations
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Advertisements

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Detector Design and Data Analysis for Heavy Ion Collision Experiments Peter, Chan Chak Fai SURE 2011 Supervisor: Prof Betty Tsang(NSCL, MSU)
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Probing the Equation of State of Neutron-Rich Matter with Heavy-Ion Reactions Bao-An Li Arkansas State University 1.Equation of State and Symmetry Energy.
Symmetry energy in the era of advanced gravitational wave detectors Hyun Kyu Lee Hanyang University Heavy Ion Meeting , Asan Science Hall, Korea.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
Clearly state goals and open questions. Questions Which exp. should we perform in order to know how far (how to measure this distance?) we are from eqil.(randomized)
The National Superconducting Cyclotron Laboratory Michigan State University Betty Tsang 5th ANL/MSU/JINA/I NT FRIB Workshop on Bulk Nuclear Properties.
Transport phenomena in heavy-ion reactions Lijun Shi NSCL MSU and Physics Department, McGill University Catania, Italy, Jan. 23, 2004.
The National Superconducting Cyclotron State University Betty Tsang Constraining neutron star matter with laboratory experiments 2005.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
For more information about the facility visit: For more information about our group visit:
Constraining the properties of dense matter A.What is the EOS   1. Theoretical approaches   2. Example:T=0 with Skyrme   3. Present status   a)
Opportunities for low energy nuclear physics with rare isotope beam 현창호 대구대학교 과학교육학부 2008 년 11 월 14 일 APCTP.
Probing properties of neutron stars with heavy-ion reactions Outline: Symmetry energy at sub-saturation densities constrained by heavy-ion collisions at.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Nuclear physics input to astrophysics: e.g.  Nuclear structure: Masses, decay half lives, level properties, GT strengths, shell closures etc.  Reaction.
Constraining the EoS and Symmetry Energy from HI collisions Statement of the problem Demonstration: symmetric matter EOS Laboratory constraints on the.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Department of Physics Kyoto University Tetsuya MURAKAMI HIMAC Pion Experiment and Pb Isotope Radius Measurements Pion Ratios and ESYM.
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
The FARCOS project Collaboration: INFN (CT, LNS, MI, NA; Italy), GANIL (France), Un. Huelva (Spain) Synergies: Fazia, Neutron detectors, Spectrometers,
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Shanghai Elliptic flow in intermediate energy HIC and n-n effective interaction and in-medium cross sections Zhuxia Li China Institute of Atomic.
Summary of EOS working group Z. Chajecki,B. Tsang Additional contributions from: Garg, Brown, Pagano Neutron stars HICs, Structure Neutron skin Tan Ahn.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
Pion productions in mass asymmetric 28 Si+In reactions at 400, 600, 800 MeV/nucleon Tetsuya MURAKAMI Department of Physics Kyoto University Based on Mr.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From Neutron Skins to Neutron Stars to Nuclear.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Pygmy Dipole Resonance in 64Fe
BNU The study of dynamical effects of isospin on reactions of p Sn Li Ou and Zhuxia Li (China Institute of Atomic Energy, Beijing )
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Probing the symmetry energy with isospin ratio from nucleons to fragments Yingxun Zhang( 张英逊 ) China Institute of Atomic Energy The 11 th International.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
Probing the symmetry energy of neutron-rich matter Betty Tsang, NSCL/MSU IWNDT in Honor of Prof. Joe Natowitz Texas A&M University, College Station, Texas,
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From neutron skins to neutron stars with a microscopic.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
Z.Q. Feng( 冯兆庆 ), W.F. Li( 李文飞 ), Z.Y. Ming( 明照宇 ), L.W. Chen( 陈列文 ), F. S. Zhang ( 张丰收 ) Institute of Low Energy Nuclear Physics Beijing Normal University.
Effective Nucleon Masses in Compressed and Expanding Neutron-Rich Matter: Motivation Multiple simulations suggest sensitivity of the n/p single and double.
g-ray spectroscopy of the sd-shell hypernuclei
Constraints on symmetry energy and n/p effective mass splitting with HICs Yingxun Zhang ( 张英逊 ) 合作者: Zhuxia Li (李祝霞) China Institute of Atomic Energy,
Cluster emission and Symmetry Energy Constraints with HIC observables Yingxun Zhang ( 张英逊 ) 2015 年 12 月 15 日, Shanghai China Institute of Atomic Energy.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Current status and future direction on symmetry energy determination using Heavy Ion Collisions How does this subfield intersect with other subfields?
Constraints on E sym (  )-L from RIB induced reactions…and more Zach Kohley NSCL/MSU NuSYM14 July 7, 2014.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Density-dependence of nuclear symmetry energy
Bao-An Li1 & Sherry J. Yennello2 1Arkansas State University
Shalom Shlomo Cyclotron Institute Texas A&M University
Transverse and elliptic flows and stopping
University of Liverpool, Liverpool, UK, July 7-9, 2014
Workshop on Nuclear Structure and Astrophysical Applications
Presentation transcript:

Plan for Korea Rare Isotope Accelerator (KoRIA*) Byungsik Hong (Korea University) October 31, 20091Heavy-Ion Meeting Outline - Introduction - Physics topics - Experimental observables - Summary * Tentative

October 31, 20092Heavy-Ion Meeting Research Topics with RIB

Nuclear Chart for Nuclear Physics October 31, 20093Heavy-Ion Meeting N Z Terra incógnita Neutron halo and skin Reorganization of the nuclear shell structure Deformation at drip lines Superheavy nuclei r-process (Novae & Supernovae) Drip lines are determined by interplay among -n-p symmetry -Coulomb force -Shell structure -NN correlation Stable Nuclei ≈ 300 Unstable nuclei observed so far ≈ 2700 Drip-lines (limit of existence) by theoretical predictions ≈ 6000 rp-process s-process (Red giants)

Landscape of Neutron Drip Line? Where is the neutron drip line? Shell property at drip line? Collectivity, deformation at drip line? Halo nuclei– abundant? universal? How halo is formed towards heavier region? 2n-halo(3body): 6 He, 11 Li, 14 Be, 17,19 B 1n-halo(2body): 11 Be, 19 C Halo found in p-shell, sd-shell ? Giant Halo? 128 Zr: 6n halo? J. Meng and P. Ring, PRL80, 460 (1998) 9 Li 11 Li n n 122 Zr 128 Zr From T. Nakamura

H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K N=8 N=16 N=20 N=28 N=2 32 Mg More neutron halo’s along the drip line? * Estimated value by Audi & Wapstra 2n halo known 4n halo (skin) 1n-halo known 22 C [S 2n* =0.42(94) MeV] 31 Ne [S n =0.29(1.64) MeV] Jurado et al. PLB649,43(2007) Island of inversion 19 C Halo? From T. Nakamura

RIKEN October 31, 2009Heavy-Ion Meeting6 RIB 9 Li n n Target NEUT HOD BOMAG DC DALI 56 NaI(Tl) 11 Li From T. Nakamura 2n breakup of halo nuclei, e.g. 11 Li

Nuclear Astrophysics October 31, 2009Heavy-Ion Meeting7 7 Be(p,  ) 8 B From T. Motobayashi We can measure 8 B Coulomb dissociation with RIB 8B8B 7 Be p 208 Pb Virtual photons

October 31, 2009Heavy-Ion Meeting8 25 Al 24 Mg 23 Na 22 Ne 21 Ne 20 Ne 22 Na 23 Mg 24 Al 21 Na 22 Mg 19 F 18 O 21 Mg 20 Na 19 Ne 18 F 17 O 18 Ne 17 F 16 O 15 N 15 O 14 O 13 N 12 C 13 C 14 N   p  HCNO cycle CNO cycle  rp process Stable Unstable CNO cycle : T 9 < 0.2 HCNO cycle: 0.2 < T 9 < 0.5 rp process : T 9 > 0.5 Nova Models Nova Cygni Nova Persei

October 31, 2009Heavy-Ion Meeting9

Superheavy Nuclei: Current Status October 31, 2009Heavy-Ion Meeting10

Reactions Tried at GSI in October 31, 2009Heavy-Ion Meeting U( 64 Ni,2-4n) Ni+ 238 U  * *

Reactions Could be Studied October 31, 2009Heavy-Ion Meeting U( 64 Ni,4n) U( 67 Zn,3n) U( 68 Zn,3n) U( 70 Zn,3n) From Y.H. Chung, Hallym Univ.

Required Detector System October 31, 2009Heavy-Ion Meeting13 1.Gas-filled recoil separator 2.Focal plane detectors 3.Rotating wheel system 4.Automated rapid chemistry apparatus – MG wheel 5.On-line gas chromatographic apparatus 6.Something like SISAK in Oslo

Spin Structure of Unstable Nuclei 1. Spin-dependent interactions  Origin of fundamental properties of nuclei  Modification in neutron rich nuclei 2. Spin-orbit couplings and potentials  Localized at the nuclear surface  Will be modified in neutron rich nuclei  Should be composed of two parts localized at different positions if p and n have different  (r)  Would have extended shape if n has an extended distribution in skin or halo nuclei 3. Need polarized p, d, and 3 He targets October 31, 2009Heavy-Ion Meeting14 From W.Y. Kim, Kyungbook Nat. Univ.

Present Status at RIKEN October 31, 2009Heavy-Ion Meeting15 S.Sakaguchi Ph.D. Thesis, University of Tokyo (2008) 4 He 6 He valence n 4 He 8 He 1.Di-neutron structure → Large recoil motion of  -core → Large charge radius (2.068 fm) 2.Two valence neutrons → Small matter radius (2.45 fm) 1.Isotropically distributed neutrons → Small recoil motion of  -core → Small charge radius (1.929 fm) 2.Four valence neutrons → Large matter radius (2.53 fm)

Present Status at RIKEN October 31, 2009Heavy-Ion Meeting16 t-matrix folding calculation Non-local g-matrix folding calculation S.Sakaguchi (2008)

October 31, 2009Heavy-Ion Meeting17 18 B.-A. Li, L.-W. Chen & C.M. Ko Physics Report, 464, 113 (2008) Nuclear Equation of State ρ 0 Nucleon density Isospin asymmetry Symmetric nuclear matter (ρ n =ρ p ) δ E/A (MeV)  (fm -3 ) CDR, FAIR (2001) F. de Jong & H. Lenske, RPC 57, 3099 (1998) F. Hofman, C.M. Keil & H. Lenske, PRC 64, (2001)

Nuclear Equation of State October 31, 2009Heavy-Ion Meeting18 Bao-An Li, PRL 88, (2002) High (Low) density matter is more neutron rich with soft (stiff) symmetry energy

Importance of Symmetry Energy October 31, 2009Heavy-Ion Meeting19  A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005) RIB can provide crucial input. Effective field theory, QCD isodiffusion isotransport + isocorrelation isofractionation isoscaling  - /  + K + /K 0 n/p + 3 H/ 3 He   Red boxes: added by B.-A. Li

Uncertainty in E sym at high  October 31, 2009Heavy-Ion Meeting20 Kinetic Isoscalar Isovector

Possible Effects on E sym October 31, 2009Heavy-Ion Meeting21 G.E. Brown and M. Rho, PRL 66, 2720 (1991); Phys. Rep. 396, 1 (2004) Brown-Rho Scaling 3-Body Force

Is NS Stable with a Super Soft E sym ? October 31, 2009Heavy-Ion Meeting22 If the symmetry energy is too soft, then a mechanical instability will occur when dP/dρ<0, neutron stars will, then, collapse while they exist in nature. G.Q. Li, C.-H. Lee & G.E. Brown Nucl. Phys. A 625, 372 (1997) ? TOV equation: a condition at hydrodynamical equilibrium Gravity Nuclear pressure For npe matter, dP/dρ<0, if E’ sym is big and negative (super-soft)

Astrophysical Implication October 31, 2009Heavy-Ion Meeting23 K 0 =211 MeV is used for this calculation; higher incompressibility for symmetric matter will lead to higher masses, systematically. The softest symmetry energy that the TOV is still stable is x = 0.93, giving M max = 0.11 M ⊙ and R ≥ 28 km.

October 31, 2009Heavy-Ion Meeting24  Range of density in HIC by - incident energy - impact parameter  Types of particles formed - emission time & density - n & p are emitted throughout - Fragments (Z=3-20) at sub-saturation densities  Change N/Z of nuclei - larger N/Z ratio is preferable π, n, p fragments Experimental Principles

Experimental Observables October 31, 2009Heavy-Ion Meeting25  Signals at sub-saturation densities 1) Sizes of n-skins for unstable nuclei 2) n/p ratio of fast, pre-equilibrium nucleons 3) 3 H/ 3 He ratio 4) Isospin fractionation and isoscaling in nuclear multufragmentation 5) Isospin diffusion (transport) 6) Differential collective flows ( v 1 & v 2 ) of n and p 7) Correlation function of n and p  Signals at supra-saturation densities  - /  + ratio 2) K + /K 0 ratio 3) Differential collective flows ( v 1 & v 2 ) of n and p 4) Azimuthal angle dependence of n/p ratio with respect to the R.P.  Correlation of various observables  Simultaneous measurement of neutrons and charged particles

October 31, 2009Heavy-Ion Meeting26 Soft E sym Stiff E sym Central density More neutrons are emitted from the n-rich system and softer symmetry energies. Yield Ratio ■ n/p □ 3 H/ 3 He M. A. Famiano et al. RPL 97, (2006) Double ratio: min. systematic error ImQMD Y(n)/Y(p) E sym (  )=12.7(  /  0 ) 2/ (  /  0 )  i

Yield Ratio ( π - /π + ) October 31, 2009Heavy-Ion Meeting27 Data: FOPI Collaboration, Nucl. Phys. A 781, 459 (2007) IQMD: Eur. Phys. J. A 1, 151 (1998) Need a symmetry energy softer than the above to make the pion production region more neutron-rich!

π - /π + Ratio October 31, 2009Heavy-Ion Meeting28 Stiff E sym Soft E sym     (N/Z) reaction system KoRIA

Isospin Diffusion Parameter October 31, 2009Heavy-Ion Meeting29 No isospin diffusion between symmetric systems Isospin diffusion occurs only in asymmetric systems A+B Non-isospin diffusion effects are the same for A in A+B & A+A and also for B in B+A & B+B F. Rami et al., FOPI, PRL 84, 1120 (2000) B. Hong et al., FOPI, PRC 66, (2002) Y.-J. Kim & B. Hong, in preparation R i = +1 R i = -1 R i = 0 for complete mixing

Isospin Diffusion Parameter October 31, 2009Heavy-Ion Meeting30 Projectile Target 124 Sn 112 Sn soft stiff  Symmetry energy drives system towards equilibrium  stiff EOS : small diffusion (| R i | ≫ 0)  soft EOS : large diffusion & fast equilibrium ( R i  0) M.B. Tsang et al., PRL 92, (2004)

Isospin Diffusion Parameter October 31, 2009Heavy-Ion Meeting31 L.W. Chen et al., PRL 94, (2005) Observable in HIC is sensitive to the  dependence of E sym and should provide constraints to the symmetry energy     1.05 stiff IBUU04: E sym (  )~31.6(  /  o )  soft E sym (  )=12.7(  /  o ) 2/ (  /  o )  i stiff soft M.B. Tsang et al., PRL 92, (2004) pBUU  i ~   1.05

Isospin Diffusion Parameter October 21-23, 2009Korean Physical Society32 E sym (  )=12.5(  /  0 ) 2/ (  /  0 )  i  i  Ri(α)Ri(α) Ri(f)Ri(f) NSCL/MSU Data at Low Energy

Collective Flow October 31, 2009Heavy-Ion Meeting33 Stiff Super Soft Large N/Z Small N/Z B.-A. Li, PRL 85, 4221 (2000) Also known as v 1

Multi-Purpose Detector October 31, 2009Heavy-Ion Meeting34

October 31, 2009Heavy-Ion Meeting35 Tentative design under discussion

Summary 1. Rich physics with RI beams  Neutron & proton drip lines  Neutron halo & skin structures  Nuclear Astrophysics  Super-heavy elements  Fundamental symmetries  Nuclear symmetry energy - Long-standing problem in nuclear physics - Crucial to understand the neutron matter - Crucial to understand the astrophysical objects October 31, 2009Heavy-Ion Meeting36 2. KoRIA  First large scale accelerator for basic science in Korea  We need your help & participation!