Cataclysmic Variable Stars Nataliya Ostrova Astronomical observatory of the Odessa National University, T.G. Shevchenko Park, Odessa,

Slides:



Advertisements
Similar presentations
Accretion High Energy Astrophysics
Advertisements

ASTR Fall Semester Joel E. Tohline, Alumni Professor Office: 247 Nicholson Hall [Slides from Lecture17]
Star Types and luminosity Do not write what is in yellow
Stellar Evolution Describe how a protostar becomes a star.
The electromagnetic spectrum is A. all of the colors of light you can see with your eyes. B. all of the different types of electromagnetic waves. C. a.
1. absolute brightness - the brightness a star would have if it were 10 parsecs from Earth.
THIS PRESENTAITON HAS BEEN RATED BY THE CLASSIFICATION AND RATING ADMINISTRATION TG-13 TEACHERS’ GUIDANCE STRONGLY ADVISED Some Material May Be Unintelligible.
RXTE Observations of Cataclysmic Variables and Symbiotic Stars Koji Mukai NASA/GSFC/CRESST and UMBC.
Components of the Universe Review REGULAR. List the stages in the life cycle of an Average Star:  Nebula – area of dust and gas where stars are formed.
Dr Matt Burleigh The Sun and the Stars. Dr Matt Burleigh The Sun and the Stars Binary stars: Most stars are found in binary or multiple systems. Binary.
Chapter 8 The Sun – Our Star.
Neutron Stars and Black Holes Please press “1” to test your transmitter.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Mass transfer in a binary system
Neutron Stars and Black Holes
Supernova. Explosions Stars may explode cataclysmically. –Large energy release (10 3 – 10 6 L  ) –Short time period (few days) These explosions used.
What Powers the Sun? Nuclear Fusion: An event where the nuclei of two atoms join together. Need high temperatures. Why? To overcome electric repulsion.
X Ray Astronomy Presented by:- Mohit Shashwat Ankit.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
White Dwarfs PHYS390 Astrophysics Professor Lee Carkner Lecture 17.
Presented by Anna Hourihane Searching for Dwarf Novae in Globular Clusters Anna Hourihane a, Paul Callanan a and Adrienne Cool b a Department of Physics,
Compact Objects Astronomy 315 Professor Lee Carkner Lecture 15.
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
Types of Stars Life Cycle of Stars Galaxies
Black Holes By Irina Plaks. What is a black hole? A black hole is a region in spacetime where the gravitational field is so strong that nothing, not even.
Overview of Astronomy AST 200. Astronomy Nature designs the Experiment Nature designs the Experiment Tools Tools 1) Imaging 2) Spectroscopy 3) Computational.
Stars, Galaxies, and the Universe.  To understand how telescopes work, its useful to understand the nature of the electromagnetic radiation. Light is.
RXJ a soft X-ray excess in a low luminosity accreting pulsar La Palombara & Mereghetti astro-ph/
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 4+5. Accretion and X-ray binaries.
I. Stars A.The Brightness of Stars -Star: A hot glowing sphere of gas that produces energy by fusion. -Fusion: The joining of separate nuclei. Common.
Basics of Cataclysmic Variables iPTF Summer School August 28, 2014 Paula Szkody U of Washington.
Star Clusters and their stars Open clusters and globular clusters General characteristics of globular clusters Globular cluster stars in the H-R diagram.
STARS By Bodin Lay. Types of Stars Main Sequence Stars - The main sequence is the point in a star's evolution during which it maintains a stable nuclear.
Cataclysmic variables as hard X-ray emitters seen by INTEGRAL The X-ray Universe 2008, Granada, Spain, May R. Gális 1,2, R. Hudec 1, F. Münz 3, M.
The UniverseSection 1 Question of the Day: Jackie used a portable electric drill to remove screws from a broken wooden table. He noticed that the screws.
Constraints on progenitors of Classical Novae in M31 Ákos Bogdán & Marat Gilfanov MPA, Garching 17 th European White Dwarf Workshop 18/08/2010.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
Ladislav Hric Astronomical Institute Slovak Academy of Sciences Our team: V. Breus P. Dubovský R. Gális N. A. Katysheva E. Kundra S. Yu. Shugarov KOLOS.
C R I M E A Activity of five WZ Sge- type systems in a few years after their outbrsts E.P. Pavlenko, O.I. Antoniuk, K.A. Antoniuk, D.A. Samsonov, A.V.
The UniverseSection 1 Section 1: The Life and Death of Stars Preview Key Ideas Bellringer What Are Stars? Studying Stars The Life Cycle of Stars.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Astronomy The study of objects and matter outside the earth's atmosphere and of their physical and chemical properties.
© Sierra College Astronomy Department 1 Astronomy 10 Elementary Astronomy COURSE GOALS & OBJECTIVES.
StarsStars. A Star…. Heats and lights the planets in a solar system Is a ball of plasma (4 th state of matter consisting of ionized particles) held together.
The UniverseSection 1 Key Ideas 〉 How are stars formed? 〉 How can we learn about stars if they are so far away? 〉 What natural cycles do stars go through?
Stellar Evolution. Solar Composition Most stars in space have this composition: 74% hydrogen, 26% helium Fusion is the energy maker of the sun.
Historical SN and their properties Total energy released ~10 54 erg in a few hours.
Orbital evolution of compact Black-hole binaries and white dwarf binaries Wencong Chen Astro-ph/ Astro-ph/
Components of the Universe Test Review:
Chapter 30 Section 2 Handout
READING: Units: 59, 60. The Family of Stars Stars come in all sizes…
Cataclysmic Variables: A Perfect Testbed for Variability Brokering Paula Szkody University of Washington Santa Barbara May 13, 2015.
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe 30.2 Stellar Evolution.
High Energy Astrophysics
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
I.Death of Stars White Dwarfs Neutron Stars Black Holes II.Cycle of Birth and Death of Stars (borrowed in part from Ch. 14) Outline of Chapter 13 Death.
AS 4002 Star Formation & Plasma Astrophysics Steady thin discs Suppose changes in external conditions are slower than t visc ~R 2 /. Set ∂/∂t=0 and integrate.
Accretion High Energy Astrophysics
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Cataclysmic Variables in K2 Paula Szkody ( U Washington ), Zhibin Dai ( Yunnan Obs ), Peter Garnavich ( Notre Dame ), Mark Kennedy ( ND+Ireland )
Review for Exam 2. Exam: 50 questions, mostly multiple choice Exam conducted at Pollock Testing Center Each student schedules the time for their exam.
Unit 2 - Cosmology Part 1: Stars Part 2: Galaxies Part 3: Origin and Evolution of the Universe.
Accretion High Energy Astrophysics
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Objectives Classifying Stars Star Formation The Main-Sequence Stage Leaving.
Galaxies with Active Nuclei
Stars Section 1: The Sun Section 2: Measuring the Stars
Evolution of the Solar System
Black Holes Escape velocity Event horizon Black hole parameters
Stellar Evolution Chapter 30.2.
Koji Mukai (NASA/GSFC/CRESST & UMBC)
Presentation transcript:

Cataclysmic Variable Stars Nataliya Ostrova Astronomical observatory of the Odessa National University, T.G. Shevchenko Park, Odessa, Ukraine Cracow, 2005

Odessa Astronomical Observatory ► Director: Prof. Dr. Valentin G. Karetnikov ► Departments: ► Physics of Stars and Galaxies (head Dr. T.V. Mishenina) ► * Chemical Composition of Cool Giants (supervisor Dr. T.V. Mishenina) ► * Chemical Composition of Galaxy (supervisor Dr. S.M. Andrievsky) ► * Periodic and Aperiodic Processes in Variable Stars (supervisor Prof. I.L. Andronov) ► Asteroids and Artificial Satellites (head Dr. N.I. Koshkin) ► Physics of Minor Bodies of the Solar System (supervisor Prof. V.G. Karetnikov)

The Astronomical Observatory in Odessa as the scientific institution was founded in Now it has two mounteneous and suburban observational stations. The observatory is equipped by two 80- cm, a 60-cm telescopes, a seven- camera Astrograph. Significant part of observations is obtained at the other observatories (6m-telescope of the Special Astrophysical Observatory, Russian Academy of Scienses, 2.6-m Shain Telescope of the Crimean astrophysical Observatory etc.) In 1993 we renewed edition of the journal with a title „Odessa Astronomical Publications”

► non-magnetic cataclysmic binary stars (ex-Nova, dwarf Nova, Nova-like) ► “semi-magnetic” cataclysmic binary stars (intermediate polars) ► magnetic cataclysmic binary stars (polars) What are cataclysmic variables? Of the 6000 stars visible to the naked eye from the Earth, well over half of two ore more bodies locked in gravitational bound orbits. About half of them consist of interacting binary systems where the two component stars are unable to complete there normal without being influenced by the presence of the other. On of the classes of interacting binary are the cataclysmic variables, or CVs, whose members include the novae, dwarf novae and the novalikes.

The CVs consist of a white dwarf (the primary star), and a red dwarf (secondary), which is typically a main-sequence star cooler than the Sun. These variables are characterized by their „cataclysmic” (i.e. violent but non-destructive) eruptions, which are associated with the presence of an accretion disc around the primary star.

The image depits the five principal components of typical CV: the primary star, the secondary star, the gas stream (formed by the transfer of material from the secondary to the primary), the bright spot (formed by the collision between the gas stream and the edge of the accretion disc), and the accretion disc. The distance between the stellar components is approximately a Solar radius (~700000km) and the orbital period is typically a few hours. The orbital periods of CVs typically range from approximately 0.6 day (14 hr) to 0.06 day (90 min). These binaries are quite small by astronomical standards: the binary separation is 1.1 (Porb/3 hr)2/3 (M1+M2)1/3 times the Sun's radius of 0.7 x 106 km (where Porb is the binary orbital period in hours and M1+M2 is the total mass of the binary in solar masses).

CVs provide a unique laboratory for the study of two fundamental astrophysical processes: accretion and binary star evolution. Accretion is the process by which matter is able to overcome the angular momentum barrier which would normally prevent material from spiralling inwards to form compact objects like the Sun, the Earth and black holes. Cataclysmic variable stars have been central to many developments in the thory of accretion disks. This is because the disk in these systems are nearby (and hence bright), they evolve on very short timescales (hour to weeks). Binary star evolution describes how to widely separated stellar companions may come together and interact, leading to some of the most exotic inhabtants of our Galaxy (black hole binaries, supernovae). CVs are vital link in the evolutionary chain of binary stars, comming immediately after a common-envelop phase and evolving via magnetic braking and gravitational radiation – observations of CVs have play the key role in the development of these theories. Why study CVs

Inter-Longitude Astronomy (ILA): many observations of our group have been obtained in an international collaboration according to the program „ILA” in Greece, Japan, Korea, Slovakia, Spain, Hungary, Germany. many observations of our group have been obtained in an international collaboration according to the program „ILA” in Greece, Japan, Korea, Slovakia, Spain, Hungary, Germany.

My Interests My research interests centre on the study of cataclysmic variables, and in particular, their evolution and the study of instabilities of accretion processies on them.

Cataclysmic Variable Types CVs are classified into various subgroups based primarily on the strength of the white dwarf's magnetic field: 1) Nominally non-magnetic systems (dwarf novae and novalike variables), B<0.1-1 MG 2) Magnetic systems with field strengths in excess of about 10 ^ 6 gauss. Magnetic CVs are further subdivided into: a) a) Intermediate Polars or DQ Her stars with magnetic field strengths ~ 1-10 MG b) b) Polars or AM Her stars with magnetic field strengths ~ MG.

Non-Magnetic Cataclysmic Variables : There are two important structures in a non-magnetic CV: 1) The accretion disk, where about half of the gravitational potential energy of the accreting material is released, and 2) The boundary layer between the accretion disk and the surface of the white dwarf, where the kinetic energy of the flow is thermalized and radiated. Because the effective temperature of the accretion disk ranges from ~ 5000 K at its outer edge to ~ few x 10^4 K at its inner edge, it radiates over a broad energy range from the optical through the far ultraviolet. Because of the small size and high luminosity of the boundary layer, its temperature is significantly higher than that of the accretion disk. When the mass-accretion rate is high (Mdot ~ 10^-8 Msun/yr; e.g., novalike variables and dwarf novae in outburst), the boundary layer is optically thick and its temperature ~ 10^5 K (10 eV), so it radiates primarily in the extreme ultraviolet and soft X-ray bandpasses. When the mass-accretion rate is low (Mdot ~ 10^-11 Msun/yr; e.g., dwarf novae in quiescence), the boundary layer is optically thin and its temperature ~ 10^8 K (10 keV), so it radiates primarily in the X-ray bandpass.

New dwarf nova subtype SU Uma star V368 Peg. In the figure, the overall light curve is shown, representing 4 nights during the superoutburst and 3 nights after. Here  R - is the average difference between the brightness of the variable star and of the comparison star.

The analysis of the brightness variations during separate nights has confirmed that this star belongs to the SU UMa - subtype because of the presence of superhumps. They may originate from the precessing accretion disk because of tidal resonance with the secondary component.

Intermediate Polars (DQ Her stars) In intermediate polars, the accretion disk is disrupted at small radii by the white dwarf magnetosphere; the accreting material then leaves the disk and follows the magnetic field lines down to the white dwarf surface in the vicinity of the magnetic poles. As the accreting material rains down onto the white dwarf surface, it passes through a strong shock where its free-fall kinetic energy is converted into thermal energy. The shock temperature is ~ 10^8 K (10 keV), so the post-shock plasma is a strong source of hard X-rays. The X-ray, ultraviolet, and optical radiation is pulsed at the spin period Pspin of the white dwarf and the beat period between spin and orbital periods: Pbeat = (1/Pspin –1/ Porb)^-1.

From top to bottom the phase folded V and R mean light curves of FO Aqr and the V-R color index for the ephemeris by Patterson et al. (1998) and our ephemeris (bottom). The vertical line marks the position of maximum. The spin period variations (Pspin = 20.9min) of FO Aqr. From 1981 to 1987, the white dwarf showed spin-down, which was then changed to a spin-up. Hellier (2001) discusses period variations as fluctuations near the equilibrium value (cf. Warner 1990) with a characteristic time of tens years.

From Williams G., 2003, PASP, 115, 618 The O-C diagram for spin-period variations of FO Aqr. Pspin = 20.9min Patterson et al. (1998). The historical change in 1987 from spin-down to a spin-up does not reflect accretion rate variations, as the mean magnitude remains constant within ~0.1 mag, and a fast acceleration of the spin- up may be caused by changes of the magnetosphere e.g. owed to the precession of the white dwarf. Our data support the ``fit 3" model of Williams (2003) for the cycle counting.

Polars (AM Her stars) In polars, the white dwarf magnetic field is so strong that: 1) The white dwarf is spin-synchronized with the binary (Pspin = Porb), and 2) No disk forms - accretion takes places directly into the white dwarf magnetosphere. Like intermediate polars, polars are strong hard X-ray sources, but the X-ray, extreme ultraviolet, ultraviolet, and optical radiation is pulsed at the binary orbital period.

The End Thank you for attention