Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan.

Slides:



Advertisements
Similar presentations
Formation of the Solar System
Advertisements

Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2006/2007 B. Dermawan AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi.
Cometary Orbit Dynamics & Physical Structure and Evolution Kuliah AS3141 Benda Kecil dalam Tata Surya Budi Dermawan Prodi Astronomi 2006/2007.
Asteroid’s Thermal Models AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 Budi Dermawan.
News from the Kuiper Belt News from the Kuiper Belt Hermann Boehnhardt Max-Planck Institute for Solar System Research (Katlenburg-Lindau/Germany)
Dynamics of the young Solar system Kleomenis Tsiganis Dept. of Physics - A.U.Th. Collaborators: Alessandro Morbidelli (OCA) Hal Levison (SwRI) Rodney Gomes.
EART160 Planetary Sciences Francis Nimmo. Last Week – Icy Satellites For icy satellites, main source of energy is tides – link between orbital and geological.
The `Nice’ Model Öpik approximation Planet migration in a planetesimal disk The Nice model Consequences of the Nice Model: Epoch of Late Heavy Bombardment,
N U Neptune crossing 3:22:1 Plutinos classical KBOs scattered KBOs N U.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
Does the Kuiper Belt have an edge? Ming-Chang Liu.
Synthetic Solar System Model (S3M) MOPS Workshop Tucson, March 11th 2008 Tommy Grav.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
TOPS 2003 Observing Projects Karen Meech Institute for Astronomy TOPS 2003 Image copyright, R. Wainscoat, IfA Image courtesy K. Meech.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
Composition and Surface Diversity of the Kuiper Belt objects Audrey Delsanti IFA - University of Hawai`i - NAI Audrey Delsanti IFA - University of Hawai`i.
NJIT Physics 320: Astronomy and Astrophysics – Lecture XIV Carsten Denker Physics Department Center for Solar–Terrestrial Research.
COMETS, KUIPER BELT AND SOLAR SYSTEM DYNAMICS Silvia Protopapa & Elias Roussos Lectures on “Origins of Solar Systems” February 13-15, 2006 Part I: Solar.
The Solar System Figure Courtesy NASA/JPL-Caltech.
Statistics of Optical Colors of KBOs and Centaurs W. Romanishin – U. of Oklahoma S. C. Tegler – Northern Arizona U.
29 NOVEMBER 2007 CLASS #25 Astronomy 340 Fall 2007.
The Dwarf Planet Pluto & New Horizon Dr. Harold Williams Montgomery College Planetarium.
Lecture 31: The Family of the Sun Astronomy 161 – Winter 2004.
Mass Distribution and Planet Formation in the Solar Nebula Steve Desch School of Earth and Space Exploration Arizona State University Lunar and Planetary.
9.2 Comets Our Goals for Learning How do comets get their tails? Where do comets come from?
Module 17: Ice Worlds Activity 1: Pluto, Charon and the Plutons.
Outer Solar System. Planets Outer solar system is dominated entirely by the four Jovian planets, but is populated by billions of small icy objects Giant.
Small Bodies of the Solar System Pluto, Comets, Asteroids, Meteors and Zodiacal Light.
Lecture 3 – Planetary Migration, the Moon, and the Late Heavy Bombardment Abiol 574.
14b. Pluto, Kuiper Belt & Oort Cloud
Accretion disk Small bodies in the Solar System Accretion disk Small bodies in the Solar System.
Completing the Inventory of the Outer Solar System Scott S. Sheppard Carnegie Institution of Washington Department of Terrestrial Magnetism.
A Tour of Our Neighborhood.
: The Golden Age of Solar System Exploration TNOs: Four decades of observations. F. Merlin M.A. Barucci S. Fornasier D. Perna.
David Nesvorny David Vokrouhlicky (SwRI) Alessandro Morbidelli (CNRS) David Nesvorny David Vokrouhlicky (SwRI) Alessandro Morbidelli (CNRS) Capture of.
The Kuiper Belt Presents. In a previous session we learned about the Oort Cloud. Today we will discuss the Kuiper belt as an extension to our discussion.
Dynamics of comets and the origin of the solar system Origin of solar systems - 30/06/2009 Jean-Baptiste Vincent Max-Planck-Institut für Sonnensystemforschung.
SEDNA: New Planet or Interstellar Menace? Steven Gibson The University of Calgary March 30, 2004.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
ASTRONOMY 8850: Planetary Sciences Why Sciences?.
Astronomy 405 Solar System and ISM Lecture 14 Comets February 15, 2013.
Small Bodies of the Solar System Pluto, Comets, Asteroids, Meteors and Zodiacal Light.
"The Eventful Universe'', Tucson AZ, March 19, 2010 Transient phenomena and variations in comets, asteroids, centaurs and trans- Neptunian objects Béatrice.
Chapter 7: Comets composition, origin, fate tail formation; the physics of sublimation.
NEW CHAPTER Our Solar System CHAPTER the BIG idea Planets and other objects form a system around our Sun. Planets orbit the Sun at different distances.
Possible Projects hot topics Messenger results Curiosity results Dawn results Cassini results outstanding objects Jovian moons edge of the Solar System.
1 The Pluto System in the Context of Kuiper Belt Formation & Evolution A. Morbidelli (OCA – Nice)
22.2 Comets and Kuiper Belt Objects Roxanne Ryan.
Wednesday September 29, 2010 (Scattered Disk, Oort Cloud)
Using the Inner Oort Cloud to Explore the History of the Earth and Sun Nathan Kaib Advisor: Tom Quinn Collaborators: Andrew Becker, Lynne Jones University.
Solar System Distance Model The planets nearest the Sun are very different from the planets farther out in composition and structure.
Chemical Composition Diversity Among 24 Comets Observed At Radio Wavelengths Nicolas Biver, Dominique Bockelée-Morvan, Jacques Crovisier, Pierre Colom.
THE SOLAR SYSTEM
Current structure of the TNB Alvaro Alvarez-Candal.
Asteroids, Comets, and Pluto (Most of) The Rest of the Solar System.
2012 Spring Semester Topics in Current Astronomy - Formation and Evolution of Planetary Systems - Course ID: Building 19 / Room number 207 for.
David Jewitt University of Hawaii Water Ice in Comets and Asteroids.
1 Earth and Other Planets 3 November 2015 Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from a great.
Astronomy 340 Fall December 2005 Class #24.
Capture of Irregular Satellites during Planetary Encounters
Where is this? Snakeskin Terrain on Pluto: In this extended color image of Pluto taken by NASA's New Horizons spacecraft, rounded and bizarrely textured.
3-4. The Tisserand Relation
Where is this? ENCELADUS by CASSINI Planetary Sciences.
Goal: To understand what the Kuiper Belt is, and why it is important
Fig. 2. Semi-major axis vs. eccentricity (left) and semi-major axis vs
14b. Pluto, Kuiper Belt & Oort Cloud
Dr. Christine M. Rodrigue
Pluto Diameter 0.18DE Rotation Period 6 days 9 hours
Starting Line 1. turn in Homework #1 2. book check 3. topic selections
Presentation transcript:

Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan

Comets, Centaurs, & TNOs

Jewitt (for 2008)

Comets (1)

Comets (2) Short Period Comet (SPC, < 200 y) - Halley Family Comet (HFC, y) - Jupiter Family Comet (JFC, < 20 y) Long Period Comet (LPC, > 200 y) Ecliptic: T > 2  JFC Isotropic: T < 2  LPC, HFC, Damocloids Ecliptic: T > 2  JFC Isotropic: T < 2  LPC, HFC, Damocloids Tisserand parameter:

Comets (3) Active comet: detectable coma  volatile & dust Inactive comet: no detectable coma Dormant comet: lost the ability to generate a detectable coma in any part of its present orbit  might be reactivated Extinct comet: (= defunc comet?) incapable of generating a coma (lost its ices, or its ices buried under a nonvolatile crust)

Dormant & Extinct Comets Weissman et al. 2003

Comet-like Asteroids & Extinct Comets Weissman et al. 2003

Sun-grazing Comets

Insitu Explorations Giotto → Halley Deep Space 1 – Borrelly Stardust – Wild2 Deep Impact → Tempel 1

Isotopic Abundances Hutsemékers 2005

Mainbelt Comets Hsieh & Jewitt 2006

Damocloids (1) Jewitt (2005) Comet-like asteroids whose T  2 Inactive nuclei of HFC & LPC Have subsequently developed comae About 25% possess retrograde orbits

Damocloids (2) The distribution of inclinations is indistinguishable from that of the HFC Jewitt 2005 : ~4000Å - ~8000Å Jewitt 2005 Lack of ultra-red matter

Centaurs: Asteroid-like objects with semimajor axes between those of Jupiter and Neptune From Jupiter to outer solar system unusual Johnston 2005 Centaurs

Albedo Dotto & Barucci 2004 Delsanti & Jewitt 2006 Dotto & Barucci 2004 Colors

Centaurs Jewitt 2005 Jewitt (for 2008) Hainaut & Delsanti 2005

(Edgeworth)-Kuiper Belt Objects [(E)KBO] Trans-Neptunian Objects (TNOs)

TNOs: Past Evolution (1) Tsiganis et al Dones et al. 2004

TNOs: Past Evolution (2) Morbidelli 2004 Levison & Morbidelli 2003

TNOs: Non-cometary objects with semimajor axes beyond Neptune's orbit Plutinos: Near the 2:3 resonance with Neptune. Pluto is the largest object near this resonance Resonance objects: Other than Plutinos but near resonances (4:5, 3:4, 3:5, 4:7, 1:2, 2:5) with Neptune Cubewanos: Eccentricities below 0.15 with semimajor axes between 41.8 AU and 48 AU (  Classical: cold & hot populations) Scattered disk objects (SDOs): Aphelion distances near Neptune's orbit and semimajor axes greater than 50 AU (+ Extended Scattered or Detached Objects) Other TNOs not fitting in the above groups Plutinos: Near the 2:3 resonance with Neptune. Pluto is the largest object near this resonance Resonance objects: Other than Plutinos but near resonances (4:5, 3:4, 3:5, 4:7, 1:2, 2:5) with Neptune Cubewanos: Eccentricities below 0.15 with semimajor axes between 41.8 AU and 48 AU (  Classical: cold & hot populations) Scattered disk objects (SDOs): Aphelion distances near Neptune's orbit and semimajor axes greater than 50 AU (+ Extended Scattered or Detached Objects) Other TNOs not fitting in the above groups

TNOs: Orbital Distribution Johnston 2005

Number of TNOs (Orbital) Populations Delsanti & Jewitt 2006 Lykawka & Mukai 2007

TNOs: Spectra (1) Dotto & Barucci 2004 Doressoundiram et al. 2007

TNOs: Spectra (2) Doressoundiram et al. 2007

TNOs: Sizes (1) Thermal Flux: Effective temp.: Standard Thermal Model (STM, Lebofsky et al. 1989) Near-Earth Asteroid Thermal Model (NEATM, Harris 1998) Thermo-Physical Model (TPM, Lagerros 1997) Optical Constraints: Density: Bond & Geometric Albedos:

TNOs: Sizes (2) Johnston 2005

Size & Albedo of Unusual Minor Planet C/2002 CE 10 Sekiguchi et al. 2005

Albedo vs Size Jewitt (for 2008)

Albedo & Spectral Gradient Jewitt 2004 Fernandez et al Jewitt et al Cruikshank et al. 2006

Colors (1) Jewitt 2005 Peixinho 2003

Colors (2) Doressoundiram & Peixinho 2005

Colors (3) Delsanti & Jewitt 2006

Large TNOs  Dwarf Planets

Large TNOs (Dwarf Planets): Spectra (1) Jewitt et al (50000) Quaoar

Large TNOs (Dwarf Planets): Spectra (2) Brown 2006 Pluto & 2003 UB313

Small Body Binary (1) Richardson & Walsh 2005 NEAsMBAs Trojan Pluto- Charon TNOs

Small Body Binary (2) Richardson & Walsh 2005 NEAsMBAs Trojan Pluto- Charon TNOs

Dwarf Planet Binary May 2006

Stellar Encounter (1) Morbidelli & Levison 2004

Stellar Encounter (2) Kenyon & Bromley 2004

Stellar Encounter (2) Kenyon & Bromley 2004

Stellar Encounter (2) Kenyon & Bromley 2004