LECTURE 19, NOVEMBER 4, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.

Slides:



Advertisements
Similar presentations
Evolution of Stars.
Advertisements

What is the fate of the sun and other stars??
LECTURE 18, NOVEMBER 2, 2010 ASTR 101, SECTION 2 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Prof. D.C. Richardson Sections
Lecture 26: The Bizarre Stellar Graveyard: White Dwarfs and Neutron Stars.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 12 Stellar Evolution.
Chapter 12 The Deaths of Stars. What do you think? Will the Sun explode? If so, what is the explosion called? Where did carbon, silicon, oxygen, iron,
PHYS The Main Sequence of the HR Diagram During hydrogen burning the star is in the Main Sequence. The more massive the star, the brighter and hotter.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Chapter 16: Evolution of Low-Mass Stars
Chapter 30 Stars and Galaxies.
Objectives Determine the effect of mass on a star’s evolution.
Binary Stellar Evolution How Stars are Arranged When stars form, common for two or more to end up in orbit Multiples more common than singles Binaries.
Supernova. Explosions Stars may explode cataclysmically. –Large energy release (10 3 – 10 6 L  ) –Short time period (few days) These explosions used.
LECTURE 20, NOVEMBER 9, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Stellar Evolution. Basic Structure of Stars Mass and composition of stars determine nearly all of the other properties of stars Mass and composition of.
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
The Lives of Stars Chapter 12. Life on Main-Sequence Zero-Age Main Sequence (ZAMS) –main sequence location where stars are born Bottom/left edge of main.
Stellar Deaths Novae ans Super Novae 16. Hydrostatic Equilibrium Internal heat and pressure from fusion pushes outward Gravity pulling mass inward Two.
Earth Science 25.2B : Stellar Evolution
This set of slides This set of slides covers the supernova of white dwarf stars and the late-in-life evolution and death of massive stars, stars > 8 solar.
Requiem for a Star Stellar Collapse. Gravity Gravity is an inexorable force always trying to cause further collapse Nebulae → Protostars Protostars →
What is the Lifecycle of a Star? Chapter Stars form when a nebula contracts due to gravity and heats up (see notes on formation of the solar system).
Supernova Type 1 Supernova Produced in a binary system containing a white dwarf. The mechanism is the same (?) as what produces the nova event.
Conversations with the Earth Tom Burbine
Life Cycles of Stars.
1 Stellar Remnants White Dwarfs, Neutron Stars & Black Holes These objects normally emit light only due to their very high temperatures. Normally nuclear.
Stellar Evolution. Clouds of gas and dust are floating around in space These are called “nebula”
Life Cycle of Stars. Stars are born in Nebulae Vast clouds of gas and dust Composed mostly of hydrogen and helium Some cosmic event triggers the collapse.
Pg. 12.  Mass governs a star’s properties  Energy is generated by nuclear fusion  Stars that aren’t on main sequence of H-R either have fusion from.
A cloud of gas and dust collapses due to gravity.
Ch Stellar Evolution. Nebula—a cloud of dust and gas. 70% Hydrogen, 28% Helium, 2% heavier elements. Gravity pulls the nebula together; it spins.
Life Cycle of Stars Nebula hundreds of light years in size contract under gravity
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Recap: Death of Stars: Low and Medium Mass Red Giant Main Sequence Star Planetary Nebula White Dwarf Black Dwarf ?? Red Dwarf Low Mass Medium Mass.
Star Formation. 1) Nebula  Cloud of interstellar gas and dust  Collapses due to its own gravity  Begins Star Formation.
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Video Questions What elements were created during the big bang?
Bell Ringer 10/13 Why do we celebrate Columbus Day?
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
Unit 1: Space The Study of the Universe.  Mass governs a star’s temperature, luminosity, and diameter.  Mass Effects:  The more massive the star, the.
By: Monkeyrocker92 And G-menfan. Nebula  A nebula is a big cloud of gas and dust.
White dwarfs cool off and grow dimmer with time. The White Dwarf Limit A white dwarf cannot be more massive than 1.4M Sun, the white dwarf limit (or Chandrasekhar.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 13 Neutron Stars and Black Holes.
Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Neutron Stars and Black Holes Chapter 13 Clickers.
E5 stellar processes and stellar evolution (HL only)
Supernova Type 1 Supernova Produced in a binary system containing a white dwarf. The mechanism is the same (?) as what produces the nova event.
Topic: The Life Cycle of Stars PSSA: D/S8.D.3.1.
Units to cover 66, 67,68. Homework 9 Unit 64, problems 4, 5, 9 Unit 65, problems 4, 10 Unit 66, problem 6.
Life of Stars. Star Birth – Nebular Model Huge clouds of gas and dust occur in space – may be exploded stars Most Nebulae (gas clouds) are invisible –
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
THE LIFE CYCLE OF A STAR Objective: I will compare and contrast the life cycle of stars based on their mass.
Stellar Evolution (Star Life-Cycle). Basic Structure Mass governs a star’s temperature, luminosity, and diameter. In fact, astronomers have discovered.
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
Stellar Evolution. Structure Mass governs a star’s temperature, luminosity, and diameter Hydrostatic Equilibrium – the balance between gravity squeezing.
© 2017 Pearson Education, Inc.
Ch 12--Life Death of Stars
Chapter 3.1graphic organizer
© 2017 Pearson Education, Inc.
Stellar Evolution Chapters 16, 17 & 18.
Section 3: Stellar Evolution
Stars begin as gas and dust called a nebula.
Stars begin as gas and dust called a nebula.
Earth Science 25.2B : Stellar Evolution
Death of Massive Stars / Exam Prep
Middleweight Stars 4-12 solar masses.
Lifecycle of a star - formation
Supernova.
Evolution of the Solar System
Fusion Reactions in the Sun
Presentation transcript:

LECTURE 19, NOVEMBER 4, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010

2

3

4

a) its mass exceeds the Chandrasekhar limit. b) its electron degeneracy increases enormously. c) fusion reactions increase in it’s core. d) iron in its core collapses. e) the planetary nebula stage ends. Question 13 A white dwarf can explode when

a) its mass exceeds the Chandrasekhar limit. b) its electron degeneracy increases enormously. c) fusion reactions increase in it’s core. d) iron in its core collapses. e) the planetary nebula stage ends. Question 13 A white dwarf can explode when If additional mass from a companion star pushes a white dwarf beyond 1.4 solar masses, it can explode in a Type I supernova.

Question 14 A Type II supernova occurs when a) hydrogen fusion shuts off. b) uranium decays into lead. c) iron in the core starts to fuse. d) helium is exhausted in the outer layers. e) a white dwarf gains mass.

a) hydrogen fusion shuts off. b) uranium decays into lead. c) iron in the core starts to fuse. d) helium is exhausted in the outer layers. e) a white dwarf gains mass. Question 14 A Type II supernova occurs when Fusion of iron does not produce energy or provide pressure; the star’s core collapses immediately, triggering a supernova explosion.

ASTR 101-3, FALL 20109

10

a) in the Big Bang. b) by nucleosynthesis in massive stars. c) in the cores of stars like the Sun. d) within planetary nebulae. e) They have always existed. Question 2 Elements heavier than hydrogen and Helium were created

Question 2 Elements heavier than hydrogen and helium were created Massive stars create enormous core temperatures as red supergiants, fusing helium into carbon, oxygen, and even heavier elements. a) in the Big Bang. b) by nucleosynthesis in massive stars. c) in the cores of stars like the Sun. d) within planetary nebula e) They have always existed.

ASTR 101-3, FALL

ASTR 101-3, FALL

a) pulsars can be used as interstellar navigation beacons. b) the period of pulsation increases as a neutron star collapses. c) pulsars have their rotation axis pointing toward Earth. d) a rotating neutron star generates an observable beam of light. Question 3 The lighthouse model explains how

Question 3 The lighthouse model explains how a) pulsars can be used as interstellar navigation beacons. b) the period of pulsation increases as a neutron star collapses. c) pulsars have their rotation axis pointing toward Earth. d) a rotating neutron star generates an observable beam of light.

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-2, SPRING 2006

ASTR 101-3, FALL

ASTR 101-3, FALL

a) matter spiraling into a large black hole. b) the collision of neutron stars in a binary system. c) variations in the magnetic fields of a pulsar. d) repeated nova explosions. e) All of the above are possible. Question 4 One possible explanation for a gamma-ray burster is

a) matter spiraling into a large black hole. b) the collision of neutron stars in a binary system. c) variations in the magnetic fields of a pulsar. d) repeated nova explosions. e) All of the above are possible. Question 4 One possible explanation for a gamma-ray burster is Gamma-ray bursts vary in length, and the coalescence of two neutron stars seems to account for short bursts.