Mph1 (60 fmol) 1 234567 9 101112 8 1314 15 16 B 1718 -B-B- ++ + + ++++ + ++ + ------ 14 10 25 14 10 2514 10 25 1 nt 5 nt15 nt Lane Time (min) 5’ flap length.

Slides:



Advertisements
Similar presentations
12-2 DNA Replication. The DNA Double Helix DNA Replication the process by which DNA makes a copy of itself occurs during interphase, prior to cell division.
Advertisements

Figure S1 RNA-primed DNA synthesis by T7 DNA polymerase. DNA synthesis on an M13 ssDNA template catalyzed by T7 DNA polymerase requires primers annealed.
Volume 6, Issue 3, Pages (September 2000)
Volume 67, Issue 1, Pages e3 (July 2017)
Volume 13, Issue 1, Pages (January 2005)
Volume 13, Issue 2, Pages (January 2004)
Volume 16, Issue 2, Pages (January 2006)
Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes.
Volume 17, Issue 1, Pages (January 2005)
The SE domains from BLM/Sgs1 orthologs show DNA SE activity.
Daniel Chi-Hong Lin, Alan D Grossman  Cell 
Volume 13, Issue 1, Pages (January 2005)
Kristina M. Johnson, Michael Carey  Current Biology 
Volume 6, Issue 3, Pages (September 2000)
Volume 3, Issue 1, Pages (January 1999)
Volume 6, Issue 3, Pages (September 2000)
Volume 149, Issue 4, Pages (May 2012)
Volume 60, Issue 3, Pages (November 2015)
Volume 6, Issue 4, Pages (October 2000)
Volume 1, Issue 5, Pages (June 2002)
Volume 31, Issue 4, Pages (August 2008)
ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation  Keiji Kimura, Tatsuya Hirano  Cell 
The Structure of Supercoiled Intermediates in DNA Replication
Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p
Ben B. Hopkins, Tanya T. Paull  Cell 
Characterization of a Triple DNA Polymerase Replisome
Ivar Ilves, Tatjana Petojevic, James J. Pesavento, Michael R. Botchan 
Volume 98, Issue 2, Pages (July 1999)
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes
Volume 35, Issue 1, Pages (July 2009)
Stephen Schuck, Arne Stenlund  Molecular Cell 
Nayef Mazloum, William K. Holloman  Molecular Cell 
The Rpd3 Core Complex Is a Chromatin Stabilization Module
Volume 50, Issue 3, Pages (May 2013)
Volume 7, Issue 3, Pages (March 2001)
Volume 6, Issue 4, Pages (October 2000)
Volume 29, Issue 2, Pages (February 2008)
Transcriptional Fidelity and Proofreading by RNA Polymerase II
Volume 25, Issue 5, Pages (March 2007)
Scott Gradia, Samir Acharya, Richard Fishel  Cell 
Base Excision Repair of Oxidative DNA Damage Activated by XPG Protein
Volume 21, Issue 7, Pages (November 2017)
Jesse Easter, James W Gober  Molecular Cell 
Ana Losada, Tatsuya Hirano  Current Biology 
RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a
Jesse Easter, James W Gober  Molecular Cell 
Sukhyun Kang, Megan D. Warner, Stephen P. Bell  Molecular Cell 
Volume 59, Issue 6, Pages (September 2015)
The DNA Damage Machinery and Homologous Recombination Pathway Act Consecutively to Protect Human Telomeres  Ramiro E. Verdun, Jan Karlseder  Cell  Volume.
Volume 10, Issue 5, Pages (November 2002)
Volume 13, Issue 2, Pages (January 2004)
Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps  Manjula Pandey, Smita S. Patel  Cell Reports  Volume.
DEAD-Box Proteins Unwind Duplexes by Local Strand Separation
Sichen Shao, Ramanujan S. Hegde  Molecular Cell 
DNA-Induced Switch from Independent to Sequential dTTP Hydrolysis in the Bacteriophage T7 DNA Helicase  Donald J. Crampton, Sourav Mukherjee, Charles.
Mu Transpositional Recombination: Donor DNA Cleavage and Strand Transfer in trans by the Mu Transposase  Harri Savilahti, Kiyoshi Mizuuchi  Cell  Volume.
Synthetic Oligonucleotides Inhibit CRISPR-Cpf1-Mediated Genome Editing
Volume 30, Issue 6, Pages (June 2008)
Volume 29, Issue 1, Pages (January 2008)
Volume 11, Issue 4, Pages (April 2003)
Volume 29, Issue 2, Pages (February 2008)
Volume 15, Issue 3, Pages (August 2004)
Daniel L. Kaplan, Mike O'Donnell  Molecular Cell 
Michael J. McIlwraith, Stephen C. West  Molecular Cell 
Kirk M Brown, Gregory M Gilmartin  Molecular Cell 
Figure 5. The endonucleolytic product from PfuPCNA/MR activity is displaced from dsDNA. Results from real-time ... Figure 5. The endonucleolytic product.
Volume 146, Issue 6, Pages (September 2011)
CRISPR Immunological Memory Requires a Host Factor for Specificity
Assembly of a Double Hexameric Helicase
Volume 3, Issue 1, Pages (January 1999)
Presentation transcript:

Mph1 (60 fmol) B B-B nt 5 nt15 nt Lane Time (min) 5’ flap length 5’ * , 5,15 nt ( ) 25 nt 50 nt Fig. S1A Helicase activity of Mph1 on 5’ flap-structured substrates of various lengths (1, 5 and 15-nt) in the flap region. Gel of Fig. 2A

Mph1 (60 fmol) B nt 27 nt48 nt Lane Time (min) 5’ tail length B B ’ * 0, 27, 48 nt ( ) 25 nt 50 nt Fig. S1B Helicase assays were performed with fork-structured substrates of various lengths (0, 27 and 48-nt) in their 5’ extension region. Gel of Fig. 2B

27 nt (random, dT, dA, dC) 5’ * 25 nt 50 nt Mph1 (60 fmol) B random Lane Time (min) 5’ flap sequence B B B dTdAdC Fig. S2A Unwinding of 5’ flap-structured substrates of different nucleotides sequences in the 27-nt 5’ flap region (random, dT, dA, and dC). Gel of Fig. 2C

27 nt (random, dT, dA) 5’ * 25 nt 50 nt Lane Mph1 (fmol) random dTdA Mph1 (fmol) Substrate bound (%) Fig. S2B Gel mobility shift assay with Mph1 on DNA substrates used in unwinding assays in Fig. 2C and Fig. S2A. See ‘Materials and Methods’ for assay condition. Gel is shown in left panel and the amount of bound DNA was quantified and represented as a bar graph in right panel.

Fig. S2C ATPase activities of Mph1 in the presence of unlabeled DNA substrates used in unwinding assays in Fig. 2C, Fig. S2A and DNA binding assay in Fig. S2B (5’ flap-structured substrates of different nucleotides sequences in the 27-nt 5’ flap region; random, dT, dA, and dC). See ‘Materials and Methods’ for reaction condition. ATP hydrolyzed was quantified and plotted against incubation periods (5, 15, and 30 min). 27 nt (random, dT, dA, dC) 5’ 25 nt 50 nt

27 nt (random, dT, dA, dC) 5’ * 25 nt 50 nt Mph1 (60 fmol) B random Lane Time (min) 5’ tail sequence B B B dTdAdC Fig. S2D Unwinding of fork-structured substrates with sequence variations in the 27-nt 5’ tail region (random, dT, dA, and dC). Gel of Fig. 2D

27 nt 5’ * 25 nt 50 nt 20 nt (dT) ’ 25 nt 50 nt 20 nt (dA) 5’ 25 nt 50 nt 20 nt (dC) * * Bo Bo Bo Mph1 (fmol) Time (min) Lanes (fmol) Substrate unwound * * Fig. S3 Helicase assays were performed with double flap substrates of different nucleotide sequences (dT, dA and dC) in their 3’ flap region in standard reaction condition. 100 fmol of Mph1 was incubated with each substrate for 10 or 30 min. 4243