Ab initio MD studies of HIV-1 Protease Candidate: Stefano Piana Agostinetti Supervisor: Paolo Carloni
Outline Biochemistry of the enzyme HIV-1 protease (HIV-1 PR) Results –The Active site conformational flexibility in the free enzyme –NMR signal calculations in the HIV-1 PR/Pepstatin adduct –Interplay between global protein motions and the reaction mechanism of HIV-1 PR Conclusions
The HIV-1 Protease Active Site Flap Flap FulcrumFulcrum Cantilever Cantilever
HIV-PR is required for viral maturation Immature non-infective viral particles HIV-1 PR Infective Viruses
HIV-1 PR cleaves polypeptide chains Polypeptide chain (Substrate) Flap Flap Active site
The HIV-1 Protease cleavage site Asp25 Asp25’ Gly27Gly27’Thr26 Thr26’
The Asp Dyad protonation state Asp25 Asp25’ Asp25 Asp25’ Asp25 Asp25’ Unstable 0.0 kcal/Mol 2.0 kcal/Mol
Minimal modeling of the Asp dyad
Adding the Thr26-Gly27 H-bond
The peptide bond dipole moment
The HIV-1 PR/Pepstatin complex
13C NMR of aspartic acids H OOO O ppm 175 ppm D 0.15 ppm
13C NMR of the Asp dyad in the HIV-1 PR/Pepstatin complex H OO OO- 178 ppm 172 ppm Isotopic substitution
Ab initio calculations of the 13C NMR chemical shift of the Asp dyad 176 ppm
Ab initio calculations of the 13C NMR chemical shift of the Asp dyad 179 ppm 175 ppm
Resonance stabilization 175 ppm 180 ppm MBO ratio: 1.00 MBO ratio: 1.68
Model system calculations
Resonance de/stabilizing contributions
The reaction mechanism
CMD simulation - the system
HIV-1 PR/Substrate complex flexibility
Substrate displacements
Model complexes to study the reaction profile > 50 kcal/Mol 20 kcal/Mol 50 kcal/Mol
Transition states 50 kcal/Mol Single proton transfer 20 kcal/Mol Concerted double proton transfer
Reaction Intermediate
Active site Flaps Cantilever Cantilever Fulcrum Drug-resistant mutants