Mitigate DDoS Attacks in NDN by Interest Traceback Huichen Dai, Yi Wang, Jindou Fan, Bin Liu Tsinghua University, China 1.

Slides:



Advertisements
Similar presentations
A CGA based Source Address Authentication Method in IPv6 Access Network(CSA) Guang Yao, Jun Bi and Pingping Lin Tsinghua University APAN26 Queenstown,
Advertisements

Network and Application Attacks Contributed by- Chandra Prakash Suryawanshi CISSP, CEH, SANS-GSEC, CISA, ISO 27001LI, BS 25999LA, ERM (ISB) June 2006.
On Pending Interest Table in Named Data Networking
Authors: Alexander Afanasyev, Priya Mahadevany, Ilya Moiseenko, Ersin Uzuny, Lixia Zhang Publisher: IFIP Networking, 2013 (International Federation for.
1 A TCAM-based solution for integrated traffic anomaly detection and policy filtering Author: Zhijun Wang, Hao Che, Jiannong Cao, Jingshan Wang Publisher:
MULTOPS A data-structure for bandwidth attack detection Thomer M. Gil Vrije Universiteit, Amsterdam, Netherlands MIT, Cambridge, MA, USA
IP Spoofing Defense On the State of IP Spoofing Defense TOBY EHRENKRANZ and JUN LI University of Oregon 1 IP Spoofing Defense.
Simulation and Analysis of DDos Attacks Poongothai, M Department of Information Technology,Institute of Road and Transport Technology, Erode Tamilnadu,
Hash-Based IP Traceback Best Student Paper ACM SIGCOMM’01.
Zhang Fu, Marina Papatriantafilou, Philippas Tsigas Chalmers University of Technology, Sweden 1 ACM SAC 2010 ACM SAC 2011.
Student : Wilson Hidalgo Ramirez Supervisor: Udaya Tupakula Filtering Techniques for Counteracting DDoS Attacks.
1 Design of Bloom Filter Array for Network Anomaly Detection Author: Jieyan Fan, Dapeng Wu, Kejie Lu, Antonio Nucci Publisher: IEEE GLOBECOM 2006 Presenter:
IP Spoofing, CS2651 IP Spoofing Bao Ho ToanTai Vu CS Security Engineering Spring 2003 San Jose State University.
1 BGP Security -- Zhen Wu. 2 Schedule Tuesday –BGP Background –" Detection of Invalid Routing Announcement in the Internet" –Open Discussions Thursday.
Efficient IP-Address Lookup with a Shared Forwarding Table for Multiple Virtual Routers Author: Jing Fu, Jennifer Rexford Publisher: ACM CoNEXT 2008 Presenter:
© 2003 By Default! A Free sample background from Slide 1 SAVE: Source Address Validity Enforcement Protocol Authors: Li,
Beyond the perimeter: the need for early detection of Denial of Service Attacks John Haggerty,Qi Shi,Madjid Merabti Presented by Abhijit Pandey.
Secure Overlay Services Adam Hathcock Information Assurance Lab Auburn University.
John Kristoff DePaul Security Forum Network Defenses to Denial of Service Attacks John Kristoff
Lecture 15 Denial of Service Attacks
Game-based Analysis of Denial-of- Service Prevention Protocols Ajay Mahimkar Class Project: CS 395T.
An Overview Zhang Fu Outline What is DDoS ? How it can be done? Different types of DDoS attacks. Reactive VS Proactive Defence.
Hash, Don’t Cache: Fast Packet Forwarding for Enterprise Edge Routers Minlan Yu Princeton University Joint work with Jennifer.
DDoS Attack and Its Defense1 CSE 5473: Network Security Prof. Dong Xuan.
Common forms and remedies Neeta Bhadane Raunaq Nilekani Sahasranshu.
Review of IP traceback Ming-Hour Yang The Department of Information & Computer Engineering Chung Yuan Christian University
Computer Security: Principles and Practice First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Chapter 8 – Denial of Service.
Tracking and Tracing Cyber-Attacks
Distributed Denial of Service CRyptography Applications Bistro Presented by Lingxuan Hu April 15, 2004.
Denial of Service (DoS) Attacks in Green Mobile Ad–hoc Networks Ashok M.Kanthe*, Dina Simunic**and Marijan Djurek*** MIPRO 2012, May 21-25,2012, Opatija,
Authors: Yi Wang, Tian Pan, Zhian Mi, Huichen Dai, Xiaoyu Guo, Ting Zhang, Bin Liu, and Qunfeng Dong Publisher: INFOCOM 2013 mini Presenter: Chai-Yi Chu.
Denial of Service Bryan Oemler Web Enhanced Information Management March 22 nd, 2011.
Source-End Defense System against DDoS attacks Fu-Yuan Lee, Shiuhpyng Shieh, Jui-Ting Shieh and Sheng Hsuan Wang Distributed System and Network Security.
Scalable Name Lookup in NDN Using Effective Name Component Encoding
--Harish Reddy Vemula Distributed Denial of Service.
Martin-1 CSE 5810 CSE 5810 Individual Research Project: Integration of Named Data Networking for Improved Healthcare Data Handling Robert Martin Computer.
A NAMED DATA NETWORKING FLEXIBLE FRAMEWORK FOR MANAGEMENT COMMUNICATION Authors: Daneil Corjuo and Rui L. Aguiar Ivan Vidal and Jamie Garcia-Reinoso Presented.
SOS: Security Overlay Service Angelos D. Keromytis, Vishal Misra, Daniel Rubenstein- Columbia University ACM SIGCOMM 2002 CONFERENCE, PITTSBURGH PA, AUG.
Packet Classifiers In Ternary CAMs Can Be Smaller Qunfeng Dong (University of Wisconsin-Madison) Suman Banerjee (University of Wisconsin-Madison) Jia Wang.
Review of the literature : DMND:Collecting Data from Mobiles Using Named Data Takashima Daiki Park Lab, Waseda University, Japan 1/15.
1 Countering DoS Through Filtering Omar Bashir Communications Enabling Technologies
A Firewall for Routers: Protecting Against Routing Misbehavior1 June 26, A Firewall for Routers: Protecting Against Routing Misbehavior Jia Wang.
A Dynamic Packet Stamping Methodology for DDoS Defense Project Presentation by Maitreya Natu, Kireeti Valicherla, Namratha Hundigopal CISC 859 University.
A Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks in Real-Time Lusheng Ji†, Joint work with Changxi Zheng‡, Dan Pei†, Jia Wang†, Paul Francis‡
Group 8 Distributed Denial of Service. DoS SYN Flood DDoS Proposed Algorithm Group 8 What is Denial of Service? “Attack in which the primary goal is to.
Multimedia & Mobile Communications Lab.
Outline Introduction Existing solutions for ad hoc
1 SOS: Secure Overlay Services A. D. Keromytis V. Misra D. Runbenstein Columbia University.
Packet-Marking Scheme for DDoS Attack Prevention
Chapter 7 Denial-of-Service Attacks Denial-of-Service (DoS) Attack The NIST Computer Security Incident Handling Guide defines a DoS attack as: “An action.
Networking Named Content Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs, Rebecca L. Braynard.
________________ CS3235, Nov 2002 (Distributed) Denial of Service Relatively new development. –Feb 2000 saw attacks on Yahoo, buy.com, ebay, Amazon, CNN.
Attacking on IPv6 W.lilakiatsakun Ref: ipv6-attack-defense-33904http://
DoS/DDoS attack and defense
Filtering Spoofed Packets Network Ingress Filtering (BCP 38) What are spoofed or forged packets? Why are they bad? How to keep them out.
SOS: An Architecture For Mitigating DDoS Attacks Authors: Angelos D. Keromytis, Vishal Misra, Dan Rubenstein. Published: ACM SIGCOMM 2002 Presenter: Jerome.
Denial-of-Service Attacks
DIVYA K 1RN09IS016 RNSIT1. Cloud computing provides a framework for supporting end users easily through internet. One of the security issues is how to.
Notes Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou
NDN (Named Data Networking)
Forwarding and Routing IP Packets
Defending Against DDoS
Defending Against DDoS
Preventing Internet Denial-of-Service with Capabilities
Statistical Optimal Hash-based Longest Prefix Match
DDoS Attack and Its Defense
ITIS 6167/8167: Network and Information Security
Achieving Resilient Routing in the Internet
Outline The spoofing problem Approaches to handle spoofing
Lecture 4a Mobile IP 1.
Presentation transcript:

Mitigate DDoS Attacks in NDN by Interest Traceback Huichen Dai, Yi Wang, Jindou Fan, Bin Liu Tsinghua University, China 1

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 2/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 3/36

Background of NDN Newly proposed clean-slate network architecture; Embraces Internet’s function transition from host-to-host communication to content dissemination; Routes and forwards packets by content names; Request-driven communication model (pull): – Request: Interest packet – Response: Data packet 4/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 5/36

Pending Interest Table (PIT) A special table in NDN and no equivalent in IP; Keeps track of the Interest packets that are received but yet un-responded; NDN router inserts every Interest packet into PIT, removes each Data packet from PIT; Brings NDN significant features: – communication without the knowledge of host locations; – loop and packet loss detection; – multipath routing support; etc. [foreshadowing] PIT – victim of DDoS attack. 6/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 7/36

DDoS in IP Multiple compromised systems send out numerous packets targeting a single system; Spoofed source IP addresses; Consume the resources of a remote host or network; Easy to launch, hard to prevent, and difficult to trace back. 8/36

DDoS in NDN (1/2) Is DDoS attack possible in NDN? – YES How to launch? – Compromised systems, – Numerous Interest packets with spoofed names, – Make evil use of forwarding rule. 9/36

DDoS in NDN (2/2) Results: – Interest packets solicit inexistent content; – Therefore, cannot be satisfied; – Stay in PIT forever or expire; – Exhaust the router’s computing and memory resources – like DDoS in IP does; – Two categories of NDN DDoS attack: Single-target DDoS Attacks Interest Flooding Attack 10/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Two Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 11/36

Single-target DDoS Attacks (1/4) Resembles IP DDoS – can be viewed as replay of IP DDoS in NDN; make use of the Longest Prefix Match rule while looking up Interest names in the FIB; Spoofed name composition: existing prefix + forged suffix; Encapsulate spoofed name in Interest packets; Interest packets forwarded to the destination content provider corresponding to the name prefix. No corresponding content returned. 12/36

Single-target DDoS Attacks (2/4) Interest packet with spoofed name. Existing Prefix Forged Suffix 13/36

Single-target DDoS Attacks (3/4) The attacking process. Victims Spoofed Interest packet No content returned! 14/36

Single-target DDoS Attacks (4/4) Victims: Content Provider (CP), Routers. Content Provider: – DDoS may “lock” its memory and computing resource; – Can block attacks by using Bloom filters. Routers: – The unsatisfiable Interest packets stay in PIT; – A PIT with huge size and high CPU utilization; – “lock” and even exhaust memory and computing resources on routers. Incurs extra load on both end hosts and routers, but the routers suffer much more! 15/36

Interest Flooding Attack (1/2) Flooding Interest packets with full forged names by distributed compromised systems; Interest packets cannot match any FIB entry in routers – broadcast or discarded; Assume that the un-matched packets will be broadcast (special bit to indicate); Forged Interest packets: – duplicated and propagated throughout the network; – reach the hosts at the edge of the network. No corresponding content returned. 16/36

Interest Flooding Attack (2/2) The attacking process. Broadcast point Spoofed Interest packet Broadcast point 17/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 18/36

Counter Measures to NDN DDoS First look at counter measures against IP DDoS: – Resource management: helpful for hosts in NDN, but a simple filter can help to block the attacks; – IP filtering: not applicable, Interest packets have no information about the source; – Packet traceback: difficult in IP, easy in NDN. NDN Interest traceback: – PIT keeps track of unresponded Interest packets – “bread crumb”; – Use “bread crumb” to trace back to the attackers. 19/36

NDN Interest traceback (1/4) Step1: Trigger Interest traceback process while PIT size increases at an alarming rate or exceeds a threshold; Step2: Router generates spoofed Data packets to satisfy the long-unsatisfied Interest packets in the PIT; Step3: Spoofed Data packets are forwarded back to the originator by looking up the PIT in intermediate routers; Step4: Dampen the originator (e.g. rate limiting). 20/36

NDN Interest traceback (2/4) Spoofed Data packets are filled with the same forged names as in the Interest packets; Match the Un-responded Interest packet in the PIT, i.e. trace back along the “bread crumb”. Existing Prefix Forged Suffix 21/36

NDN Interest traceback (3/4) Against Single-target DDoS Attacks spoofed Data packet 22/36

NDN Interest traceback (4/4) Against Interest Flooding Attack spoofed Data packet 23/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 24/36

Evaluation (1/7) Two parts: – Harmful consequences of the DDoS attacks; – Effects of the counter measure. Platform – Xeon E5500 CPU, 2.27GHz, 15.9G RAM. Topology – sub-topology from EBONE – the Rocketfuel topology for EBONE (AS1755), consisting of 172 routers and 763 edges. (Randomly chosen.) 25/36

Evaluation (2/7) Single-target DDoS Attacks – 100 attackers; – Interest packets sending rate: 1,000 per second. – Spoofed names = existing prefix + forged suffixes, around 1,000 bytes. Evaluation Goals (on edge routers) – Number of PIT entries; – Memory consumption of PIT; – CPU cycles on the edge router due to DDoS attack. 26/36

Evaluation (3/7) Figure: Increased # of PIT entries due to DDoS attacks. Figure: Increased memory consumption of PIT due to DDoS attacks. 27/36

Evaluation (4/7) Figure: Router’s CPU cycles consumed per second under DDoS attacks. 28/36

Evaluation (5/7) Interest Flooding Attack – Similar results as Single-target DDoS on each router. Effect of Interest Traceback, goals: – Number of identified attackers; – Extra # of PIT entries due to DDoS attacks after Interest traceback begins; – CPU cycles consumed per second decline after Interest traceback begins. 29/36

Evaluation (6/7) Figure: number of identified attackers over time 30/36

Evaluation (7/7) Figure: number of PIT entries decreases as more and more attackers are detected. Figure: consumed CPU cycles decrease as more and more attackers are detected. 31/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 32/36

Related Work (1/2) [1] T. Lauinger, Security & scalability of content- centric networking, Master’s Thesis, Technischeat Universit Darmstadt, – Come up with the idea that DoS can use PIT to fill up available memory in a router; – Some preliminary ideas of counter measures. [2] Y. Chung, Distributed denial of service is a scalability problem, ACM SIGCOMM CCR, – Identify that broadcasting Interest packets can overfill the PIT in a router; – No counter measure proposed. 33/36

Related Work (2/2) [3] [Technical Report] M. Wahlisch, T. C. Schmidt, and M. Vahlenkamp, Backscatter from the data plane – threats to stability and security in information-centric networking, – massive requests for locally unavailable content; – No counter measure proposed. [4] [Technical Report] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, Dos & ddos in named-data networking, – Aware of the Interest Flooding attack (one of the two basic DDoS categories in our paper) as we do; – a Tentative Countermeasure – Push-back Mechanism, different from out Traceback method; – no assessment or evaluation. 34/36

Outline Background of Named Data Networking (NDN) Pending Interest Table (PIT) DDoS in IP & NDN Concrete Scenarios of DDoS attack Counter Measures to NDN DDoS attack Evaluation Related Work Conclusion 35/36

Conclusion Present a specific and concrete scenario of DDoS attacks in NDN; Demonstrate the possibility of NDN DDoS attacks; Identify the Pending Interest Table as the largest victim of NDN DDoS; Propose a counter measures called Interest traceback against NDN DDoS; Verify the effectiveness of Interest traceback. 36/36

THANK YOU! QUESTIONS PLEASE 36/37