Wavelet Transform and SPIHT Coding
Outline Wavelet Transform SPIHT Coding Multiple Description Coding
Wavelet Transform WHY Transform ? (1)energy compaction 能量集中在較少的區塊中 (2)decorrelation 去除相鄰點之間的相關性
Wavelet Transform
Discrete Wavelet Transformation LH LL LH HL HH
Discrete Wavelet Transformation LL1HL1 LH1HH1 LL2HL2 HL1 LH2 HH2 LH1HH1 HL2 HL1 LH2HH2 LH1HH1 LL3HL3 LH3HH3 第一階第二階 第三階
5/3 Lena 2-level 96.64%0.41%0.92% 0.35%0.94% 0.27%0.43%
使用 LL2 回復 PSNR= dB
Data Extension
Period or Symmetric Extension bpp9/710/185/39/7M5/11A5/11C13/7C13/7T / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /39.74 Lena
SPIHT Coding DWT SPIHTIWT
SPIHT Coding Proposed by Said and Pearlman in 1996 Regard tree as the unit Idea of zerotree A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees, ” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp , June 1996.
SPIHT Coding
Two Type Zerotree TYPE A TYPE B
SPIHT Coding Initial threshold = T T=T/2 LIP: List of Insignificant Pixel LIS: List of Insignificant Set LSP: List of Significant Pixel
Compression Performance with Various Filters bppD2D4D6D89-tap9/710/185/39/7M5/11A5/11C13/7C13/7T Lena
SPIHT 的錯誤回復 因封包遺失所造成的圖形品質降低 使用一些方法將遺失的部份回復
Multiple Description Coding 利用額外的資訊去達到錯誤保護的效果 先附加較重要的資料
Multiple Description Coding
Lena 0.125bpp 10% packet lost Unprotect PSNR=14.29dBMDC PSNR=27.95dB