Lecture 16 Diffraction Chp. 37

Slides:



Advertisements
Similar presentations
Wave Nature of Light  Refraction  Interference  Young’s double slit experiment  Diffraction  Single slit diffraction  Diffraction grating.
Advertisements

Diffraction, Gratings, Resolving Power Textbook sections 28-4 – 28-6 Physics 1161: Lecture 21.
1308 E&M Diffraction – light as a wave Examples of wave diffraction: Water waves diffract through a small opening in the dam. Sound waves diffract through.
The waves spread out from the opening!
 In our analysis of the double slit interference in Waves we assumed that both slits act as point sources.  From the previous figure we see that the.
Copyright © 2009 Pearson Education, Inc. Lecture 3 – Physical Optics b) Diffraction.
The Wave Nature of Light
Topic 11.3 Diffraction.
last dance Chapter 26 – diffraction – part ii
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Diffraction of Light Waves
Chapter 34 The Wave Nature of Light; Interference
Chapter 34 The Wave Nature of Light; Interference
Diffraction Physics 202 Professor Lee Carkner Lecture 24.
Phys 102 – Lecture 22 Interference 1. Physics 102 lectures on light Lecture 15 – EM waves Lecture 16 – Polarization Lecture 22 & 23 – Interference & diffraction.
Interference & Diffraction
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Double Slit Diffraction Physics 202 Professor Lee Carkner Lecture 27.
Lecture 3 – Physical Optics
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Double Slit Diffraction Physics 202 Professor Lee Carkner Lecture 27.
Chapter 25: Interference and Diffraction
Diffraction, Gratings, Resolving Power
11 反射、折射、干涉、繞射. Sections  反射 (reflection) 與折射 (refraction)  干涉 (interference)  繞射 (diffraction)
Multiple-Slit Interference Uniform slits, distance d apart. Light of wavelength. Screen L away “Thin” slits  compared to d) L >> d then path length difference.
Diffraction vs. Interference
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Lecture 15 Interference Chp. 35
Lecture 15 Interference Chp. 35 Topics –Interference from thin films –Due to the wave nature of light –Change in wavelength and phase change in a medium.
Chapter 27 Interference and the Wave Nature of Light.
Interference and the Wave Nature of Light
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Thus, the image formed by lens 2 is located 30 cm to the left of lens 2. It is virtual (since i 2 < 0). 30 The magnification is m = (-i 1 /p 1 ) x (-i.
Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing.
In the previous chapter we were treating light as rays. A powerful simple method. Now we are treating light as a wave. Chapter 37 & 38: The wave nature.
Diffraction When monochromatic light from a distance
Diffraction at a single slit Sketch the variation with angle of diffraction of the relative intensity of light diffracted at a single slit
Lecture 16 Diffraction Ch. 36 Topics –Newtons Rings –Diffraction and the wave theory –Single slit diffraction –Intensity of single slit diffraction –Double.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
S-110 A.What does the term Interference mean when applied to waves? B.Describe what you think would happened when light interferes constructively. C.Describe.
Physics Light: Geometric Optics 24.1 Waves versus Particles 24.2 Huygens’ Principle 24.3 Young’s double-slit Interference 24.5 Single-slit Diffractin.
The waves spread out from the opening!
Light Interference Continued…
Ch 16 Interference. Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front.
Lecture 27-1 Thin-Film Interference-Cont’d Path length difference: (Assume near-normal incidence.) destructive constructive where ray-one got a phase change.
1© Manhattan Press (H.K.) Ltd. Young’s double slit experiment Young’s double slit experiment 9.10 Interference of light waves Relationship between x,,
1 W14D2: Interference and Diffraction Experiment 6 Today’s Reading Course Notes: Sections
1 Fraunhofer Diffraction: Single, multiple slit(s) & Circular aperture Fri. Nov. 22, 2002.
The Wave Nature of Light
Chapter 38 Diffraction Patterns and Polarization.
Diffraction AP Physics B. Superposition..AKA….Interference One of the characteristics of a WAVE is the ability to undergo INTERFERENCE. There are TWO.
Chapter 24 The Wave Nature of Light
11.3 – Single slit diffraction
Physics 102: Lecture 21, Slide 1 Diffraction, Gratings, Resolving Power Physics 102: Lecture 21.
Young’s Double Slit Contents: Interference Diffraction Young’s Double Slit Angle Distance Single slit Rayleigh Criterion.
Diffraction Practice Phys 11. Single Slit Diffraction A water wave impinges on a single opening; using the single slit diffraction equation, determine.
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Phys102 Lecture 26, 27, 28 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution.
Interference Requirements
Light Interference Continued…
A. Double the slit width a and double the wavelength λ.
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
Diffraction, Gratings, Resolving Power
Diffraction vs. Interference
The Geometry of Interference and Diffraction
LEAD Tutors/Peer Instructors Needed!
The waves spread out from the opening!
Presentation transcript:

Lecture 16 Diffraction Chp. 37 Topics Young’s double slit interference experiment Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Circular aperture and double slit diffraction Diffraction grating Dispersion and resolving power Warm-up problem Demos Diffraction grating and slits Inverted mirage Measuring diameter of a strand Debra’s hair

Young’s Double Slit Interference Experiment q m=0 m=1 m=2 D

Maxima Minima m ym +/- 1 2 3 Dl/d 2Dl/d 3Dl/d m ym +/- 1 2 3 Dl/2d 1 2 3 Dl/d 2Dl/d 3Dl/d m ym +/- 1 2 3 Dl/2d 3Dl/2d 5Dl/2d 7Dl/2d

What about the intensity of light along the screen?

From the table on the previous slide we see that the separation 13E Suppose that Young’s experiment is performed with blue-green light of 500 nm. The slits are 1.2mm apart, and the viewing screen is 5.4 m from the slits. How far apart the bright fringes? From the table on the previous slide we see that the separation between bright fringes is

Diffraction of a single slit Find minimum ym Find maximum First maximum lies on the axis at q = 0 or ym=0. Other maxima lie in between the minima. To find them we need to find the intensity along the screen.

Intensity of single slit diffraction

Maxima/Minima conditions

Exact solution for maxima To find maxima of a function, take derivative and set equal to 0 Transcendental equation. Solve graphically

8. A 0. 10-mm-wide slit is illuminated by light of wavelength 589nm 8. A 0.10-mm-wide slit is illuminated by light of wavelength 589nm. Consider a point P on a viewing screen on which the diffraction patters of the slit is viewed; the point is at 30o from the central axis of the slit. What is the phase difference between the Huygens wavelets arriving at point P from the top and midpoint of the slit? (Hint: see Eq. 37-4.) We note that nm = 10-9 m = 10-6 mm. From Eq. 37-4, This is equivalent to 266.7 - 84 = 2.8 rad = 160o

6. Sound waves with frequency 3000 Hz and speed 343 m/s diffract through a rectangular opening of a speaker cabinet and into a large auditorium. The opening, which has a horizontal width of 30.0 cm, faces a wall 100 m away. Where along that wall will a listener be at the first diffraction minimum and thus have difficult hearing the sound? (Neglect reflections). Let the first minimum be a distance y from the central axis which is perpendicular to the speaker. Then q y Therefore,

Diffraction and Interference by a double slit I = I (double slit interference) x I(diffraction)

Sample problem 37-4 How many bright interference fringes fall within the central peak of the diffraction envelope? The idea here is to find the angle where the first minimum occurs of the diffraction envelope. Given We have m=0 and m=1,2,3 and 4 on both sides of central peak. Ans is 9

Diffraction by a circular aperature The first minimum for the diffraction of light from a circular aperature is given by: where d is the diameter of the aperature. Our ability to resolve two distant point like objects is determined when the first minimum of one objects diffraction pattern overlaps the central maximum of another. This is called Raleigh’s criterion. Example

Example 15E. The two headlights of an approaching automobile are 1 Example 15E. The two headlights of an approaching automobile are 1.4 m apart. Assume the pupil diameter is 5.0 mm and the wavelength of light is 550 nm. (a) At what angular distance will the eye resolve them and (b) at what distance? (a) (b) s D

Diffraction Grating Double slit -- N slits or rulings. w d = w/N where w is the entire width of the grating

Can be used to measure wavelength of light Measure angles of diffracted lines with a spectroscope using formula below. Then relate to wavelength Resolving power of grating. Measure of the narrowness of lines Highest R Highest D Dispersion of a grating. Measure of how well lines are separated

Show diffraction gratings with increasing N and single slit diffraction with varying slit width a.

Babinets Complementarity Principle In the diffraction region the intensity is the same whether you have an aperature or opaque disk. You can also replace a slit with a wire or hair strand. A compact disk is an example of a diffraction grating in reflection instead of transmission. Experiment: Measure diameter of a strand of hair from Debra.

Mirage eye sky 1,09 1.09 1.08 1.08 1.07 1.07 1.06 Hot road causes gradient in the index of refraction that increases as you increase the distance from the road In the demo before you the gradient is in the opposite direction

Warm-up HRW6 37.CQ.02. [73994] You are conducting a single-slit diffraction experiment with light of wavelength l. (a) What appears, on a distant viewing screen, at a point at which the top and bottom rays through the slit have a path length difference equal to 5l.? the m = 5 maximum the m = 5 minimum the m = 4 minimum the m = 4 maximum (b) What appears, on a distant viewing screen, at a point at which the top and bottom rays through the slit have a path length difference equal to 4.5l.? the minimum between the m = 4 and m = 5 minima the minimum between the m = 4 and m = 5 maxima the maximum between the m = 4 and m = 5 maxima the maximum between the m = 4 and m = 5 minima