Anaerobic Digestion: Biomass to Bioenergy Douglas W. Hamilton, Ph.D., P.E. Associate Professor, Biosystems and Agricultural Engineering Waste Management Specialist, Oklahoma Cooperative Extension Service
Anaerobic Digestion of Manure Understanding Basic Processes
Digestion Process CH 4 CO 2 H 2 NH 3 H 2 S + Biogas
Acid Formers Methane Formers Liquifiers
Acid Formers Methanogens Hydrolizers
Community Needs 1.Food 2.Proper pH 3.Sufficient Temperature 4.Sufficient Time to Reproduce 5.Absence of Inhibitory Substances
Community Needs Proper pH : ~ 6.5 to 7.5
Community Needs Sufficient Temperature Psychrophilic (15-25 o C) Mesophilic (30-38 o C) Thermophilic (50-60 o C)
Community Needs Sufficient time to reproduce
HRT = Volume of Reactor/Flow out
SRT = Solids in Reactor/Solids Leaving
Anaerobic Digestion of Manure Understanding Basic Processes Types of Reactors
Low Rate Reactor SRT = HRT
High Rate Reactor SRT > HRT
How much energy?
Anaerobic Digestion of Manure Understanding Basic Processes Types of Reactors Organic Matter of Wastewater and Manure Methane Production Potential Toxic and Inhibitory Materials
Codigestion Mixing a highly digestible material with a source of microorganisms (manure) to produce a large volume of biogas.
Methane Potential Volatile Solids Content
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat TS FS
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat TS FS VS
VS db % Beef Manure82 Dairy Manure84 Wood Shavings99 Alfalfa Silage95 Grease99
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat Oxygen Demand
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat Oxygen Demand COD BOD u
Methane Potential Volatile Solids Content COD
Anaerobic Catabolism OM + Heat → CH 4 + CO 2 + H 2 O + Cells
Anaerobic Catabolism OM + Heat → CH 4 + CO 2 + H 2 O + Cells Biogas
Combustion OM + Heat → CH 4 + CO 2 + H 2 O + Cells CH 4 + 2O 2 → CO 2 + H 2 O + Heat
Combustion OM + Heat → CH 4 + CO 2 + H 2 O + Cells CH 4 + 2O 2 → CO 2 + H 2 O + Heat Oxygen Demand
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat Two moles O 2 per mole CH 4
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat 2n OD = n CH4
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat PV = nRT
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat V CH4 = 2n OD RT/P
Ultimate Gas Yield CH 4 +2O 2 → CO 2 + H 2 O + Heat 0.38 L CH 4 produced per kg OD 20 o C and 1 atm
VS db % COD:VS Beef Manure821.2 Dairy Manure841.2 Wood Shavings Alfalfa Silage Grease
Methane Potential Volatile Solids Content COD BMP
BMP Biochemical Methane Potential
D.P. Chynoweth
VS db % COD:VS COD converted to CH 4 % Beef Manure Dairy Manure Wood Shavings Alfalfa Silage Grease
D.P. Chynoweth Specific Methane Yield (L CH 4 g -1 VS)
VS db % COD:VS COD converted to CH 4 % Specific Methane Yield L CH 4 g -1 VS Beef Manure Dairy Manure Wood Shavings Alfalfa Silage Grease
Community Needs 1.Food 2.Proper pH 3.Sufficient Temperature 4.Sufficient Time to Reproduce 5.Absence of Inhibitory Substances
Methane Potential Volatile Solids Content COD BMP ATA
ATA Anaerobic Toxicity Assay
Inhibition (%) I = (1 - Pt/Pc) X 100 Where: Pc = gas produced 0% inclusion Pt = gas produced at test inclusion
ATA Anaerobic Toxicity Assay
Methane Potential Volatile Solids Content COD BMP ATA Pilot Testing
Pilot Scale Testing
B o S o θ v 1 - K µ m θ s – 1 + K VRE = Chen, Y.R. and A.G. Hashimoto Substrate utilization kinetic model for biological treatment processes. Biotech &. Bioeng. 22:
Any Questions?