Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.

Slides:



Advertisements
Similar presentations
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Advertisements

Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
GREG PETERSEN AND NANCY SANDLER SINGLE PARAMETER SCALING OF 1D SYSTEMS WITH LONG -RANGE CORRELATED DISORDER.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Youjin Deng Univ. of Sci. & Tech. of China (USTC) Adjunct: Umass, Amherst Diagrammatic Monte Carlo Method for the Fermi Hubbard Model Boris Svistunov UMass.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Implementing a NRG code, handling second quantization expressions, symmetries, parallelization issues Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Calculation of dynamical properties using DMRG Karen A. Hallberg Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina Leiden, August 2004.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
The alpha to gamma transition in Cerium: a theoretical view from optical spectroscopy Kristjan Haule a,b and Gabriel Kotliar b a Jožef Stefan Institute,
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Correlations in quantum dots: How far can analytics go?
Monte Carlo Simulation of Interacting Electron Models by a New Determinant Approach Mucheng Zhang (Under the direction of Robert W. Robinson and Heinz-Bernd.
Transport properties: conductance and thermopower
2D-MIT as a Wigner-Mott Transition Collaborators: John Janik (FSU) Darko Tanaskovic (FSU) Carol Aguiar (FSU, Rutgers) Eduardo Miranda (Campinas) Gabi.
Tutorial 4: Kondo peak splitting in magnetic field, transport integrals, conductance and thermopower Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Dynamical Mean Field Theory Approach to the Electronic Structure Problem of Solids Gabriel Kotliar Physics Department and Center for Materials Theory.
Tutorial 1 & 2: getting the code to run, thermodynamics, expectation values, flow diagrams, ground-state energy Rok Žitko Institute Jožef Stefan Ljubljana,
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Dephasing by magnetic impurities Tobias Micklitz, A. Altland and A
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Application of the Cluster Embedding Method to Transport Through Anderson Impurities George Martins Carlos Busser Physics Department Oakland University.
Lanczos approach using out-of-core memory for eigenvalues and diagonal of inverse problems Pierre Carrier, Yousef Saad, James Freericks, Ehsan Khatami,
New Vista On Excited States. Contents Monte Carlo Hamiltonian: Effective Hamiltonian in low energy /temperature window.
Tensor networks and the numerical study of quantum and classical systems on infinite lattices Román Orús School of Physical Sciences, The University of.
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Tutorial 3: spectral functions for SIAM, arbitrary DOS, finite-tempratures, T-matrix for Kondo model Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Lecture schedule October 3 – 7, 2011
Collaborators: Bugra Borasoy – Bonn Univ. Thomas Schaefer – North Carolina State U. University of Kentucky CCS Seminar, March 2005 Neutron Matter on the.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Flat Band Nanostructures Vito Scarola
1 (c) SNU CSE Biointelligence Lab, Chap 3.8 – 3.10 Joon Shik Kim BI study group.
Nonequilibrium steady-state transport through quantum impurity models – a hybrid NRG-DMRG treatment Frauke Schwarz, Andreas Weichselbaum, Jan von Delft.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Review on quantum criticality in metals and beyond
Quantum entanglement, Kondo effect, and electronic transport in
Conductance through coupled quantum dots
Conductance through coupled quantum dots
STM Differential Conductance of a Pair of Magnetic Adatoms
A Numerical Renormalization Group Approach to Strongly Correlated Systems: From Semiconducting Carbon Nanotubes to Atomic Bose Gases Robert Konik, Yury.
Dynamical mean field theory: In practice
Chen Ahai and Gao Xianlong
QCD at very high density
Presentation transcript:

Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June 2013, SISSA, Trieste, Italy

Hubbard model on the Bethe lattice, AFM phase spin-polaron structure ( “ string-states ” )

Dynamical mean-field theory Hubbard model

“Classical impurity” (potential scattering)

“Quantum impurity” (exchange scattering) This is the Kondo model!

Nonperturbative behaviour The perturbation theory fails for arbitrarily small J !

Screening of the magnetic moment Kondo effect!

“infrared slavery” T >> T K “Asymptotic freedom” T << T K Analogy: T K   QCD

Krishnamurthy, Wilkins, Wilson, PRB 21, 1003 (1980)

Frota, Oliveira, PRB 33, 7871 (1986), Costi, Hewson, Zlatić, JPCM 6, 2519 (1994)

Energy cascading Scaling Vicinity of a fixed point Amplification and deamplification Universal behaviour of different systems Relevant operators Irrelevant operators Renormalization group theory RG explains the universality of critical phenomena in continuous phase transitions. K. G. Wilson, Nobel prize 1982.

Renormalization group ?

Cutoff renormalization

2) Campo-Oliveira scheme1) Conventional scheme Discretization schemes Campo, Oliveira, PRB 72, (2005). Chen, Jayaprakash, JPCM 7, L491 (1995); Ingersent, PRB 54, (1996); Bulla, Pruschke, Hewson, JPCM 9, (1997).  (  ) = density of states in the band 3) Scheme without artifacts R. Žitko, Th. Pruschke, PRB 79, (2009) R. Žitko, Comput. Phys. Comm. 180, 1271 (2009)

Iterative diagonalization Recursion relation:

Energy-scale separation

Extremely fast (for single-orbital problems) Arbitrarily low temperatures Real-frequency spectral functions Arbitrary local Hamiltonian / hybridization function

Dynamic quantities We ’ re interested in correlators such as or their Fourier transforms Spectral decomposition (Lehmann representation): Frota, Oliveira, PRB 33, 7871 (1986); Sakai, Shimizu, Kasuya, JPSJ 58, 3666 (1989); Costi, Hewson, Zlatić, JPCM 6, 2519 (1994); Hofstetter, PRL 85, 1508 (2000).

Patching p p  1/2 pp p: patching parameter (in units of the energy scale at N+1-th iteration) Bulla, Costi, Vollhardt, PRB 64, (2001). Alternatively: complete Fock space approach. Peters, Pruschke, Anders, PRB 74, (2006) Weichselbaum, von Delft, PRL 99, (2007).

Broadening  E =  |E|

High-resolution spectral functions

Dynamical mean-field theory Hubbard model

Hubbard model on the Bethe lattice, PM phase inner band-edge features See also DMRG study, Karski, Raas, Uhrig, PRB 72, (2005).

Tools: SNEG and NRG Ljubljana Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators Efficient general purpose numerical renormalization group code flexible and adaptable highly optimized (partially parallelized) easy to use Both are freely available under the GPL licence:

nrginit nrgrun various scripts

Lectures plan 1a. Introduction to QIP and NRG 1b. Discretization, z-averaging, thermodynamics, flow diagrams 2a. Implementing NRG, handling second quantization expressions, parallelization issues 2b. Tutorial: getting the code to run, basic calculations 3a. Spectral function calculations, self-energy trick, DMNRG, patching, complex Fock space basis approaches 3b. Tutorial: themodynamics and flow diagrams for Kondo model and SIAM 4a. More on spectral functions: systematic errors, broadening issues 4b. Tutorial: spectral function for SIAM, T matrix for Kondo model

5a. Transport properties 5b. Tutorial: Kondo peak splitting in magnetic field, transport properties, conductance and thermopower in SIAM 6a. NRG as impurity solver in dynamical mean-field theory, self- consistency, Broyden mixing 6b. Tutorial: Hubbard model, MIT at half-filling, bad metal behavior 7a. Underscreening, overscreening, (singular,regular,non)-Fermi liquids 7b. Tutorial: S=1 Kondo model, two-channel Kondo model Optional: phonons, impurities in superconductors, multi-impurity models

Reference works Wilson, RMP 1975 Krishnamurthy, Wilkins, Wilson, 2xPRB 1980 Hofstetter, PRL 2000 Anders, Schiller, Peters, Pruschke, Weichselbaum, von Delft, several papers, Bulla, Costi, Pruschke, RMP 2008