Integration: “the Definition of Area as a Limit; Sigma Notation”

Slides:



Advertisements
Similar presentations
Riemann sums, the definite integral, integral as area
Advertisements

Section 4.4 The Derivative in Graphing and Applications- “Absolute Maxima and Minima”
Follow the link to the slide. Then click on the figure to play the animation. A Figure Figure
5/16/2015 Perkins AP Calculus AB Day 5 Section 4.2.
Section 4.5 The Derivative in Graphing and Applications: “Applied Maximum and Minimum Problems”
MTH 252 Integral Calculus Chapter 6 – Integration Section 6.4 – The Definition of Area as a Limit; Sigma Notation Copyright © 2005 by Ron Wallace, all.
INTEGRALS 5. INTEGRALS We saw in Section 5.1 that a limit of the form arises when we compute an area.  We also saw that it arises when we try to find.
Section 8.3 Slope Fields; Euler’s Method.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Section 9.1 Infinite Series: “Sequences”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009.
Copyright © Cengage Learning. All rights reserved. 5 Integrals.
Copyright © Cengage Learning. All rights reserved. 5 Integrals.
Chapter 5 Key Concept: The Definite Integral
Section 4.1 The Derivative in Graphing and Applications- “Analysis of Functions I: Increase, Decrease, and Concavity”
“Before Calculus”: New Functions from Old.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc.
4.2 Area Under a Curve.
CHAPTER FIVE Integration. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley.
Aim: Riemann Sums & Definite Integrals Course: Calculus Do Now: Aim: What are Riemann Sums? Approximate the area under the curve y = 4 – x 2 for [-1, 1]
Section 6.1 Area Between Two Curves. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by.
Integration Copyright © Cengage Learning. All rights reserved.
Integration 4 Copyright © Cengage Learning. All rights reserved.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
“Before Calculus” Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Area/Sigma Notation Objective: To define area for plane regions with curvilinear boundaries. To use Sigma Notation to find areas.
Section 6.5 Area of a Surface of Revolution. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright.
Introduction to integrals Integral, like limit and derivative, is another important concept in calculus Integral is the inverse of differentiation in some.
Section 5.6 Integration: “The Fundamental Theorem of Calculus”
CHAPTER 4 SECTION 4.2 AREA.
Section 5.2: Definite Integrals
1 §12.4 The Definite Integral The student will learn about the area under a curve defining the definite integral.
Integrals  In Chapter 2, we used the tangent and velocity problems to introduce the derivative—the central idea in differential calculus.  In much the.
Learning Objectives for Section 13.4 The Definite Integral
“Limits and Continuity”: Limits (An Intuitive Approach)
Chapter 5-The Integral Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
Section 5.5 Integration: “The Definite Integral”.
Estimating with Finite Sums
Antidifferentiation: The Indefinite Intergral Chapter Five.
Section 5.1/5.2: Areas and Distances – the Definite Integral Practice HW from Stewart Textbook (not to hand in) p. 352 # 3, 5, 9 p. 364 # 1, 3, 9-15 odd,
Copyright © Cengage Learning. All rights reserved. 4 Integrals.
Section 5.2 Integration: “The Indefinite Integral”
Topics in Differentiation: “Derivative of Logarithmic Functions”
Sigma Notation, Upper and Lower Sums Area. Sigma Notation Definition – a concise notation for sums. This notation is called sigma notation because it.
Integration 4 Copyright © Cengage Learning. All rights reserved.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Area of a Plane Region We know how to find the area inside many geometric shapes, like rectangles and triangles. We will now consider finding the area.
In Chapters 6 and 8, we will see how to use the integral to solve problems concerning:  Volumes  Lengths of curves  Population predictions  Cardiac.
Area/Sigma Notation Objective: To define area for plane regions with curvilinear boundaries. To use Sigma Notation to find areas.
INTEGRALS We saw in Section 5.1 that a limit of the form arises when we compute an area. We also saw that it arises when we try to find the distance traveled.
5 INTEGRALS.
Chapter 6 Integration Section 4 The Definite Integral.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
4.2 Area Definition of Sigma Notation = 14.
Section 9.3 Infinite Series. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley.
5.1 Areas and Distances. Area Estimation How can we estimate the area bounded by the curve y = x 2, the lines x = 1 and x = 3, and the x -axis? Let’s.
Area/Sigma Notation Objective: To define area for plane regions with curvilinear boundaries. To use Sigma Notation to find areas.
Definite Integrals & Riemann Sums
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
5.2 – The Definite Integral. Introduction Recall from the last section: Compute an area Try to find the distance traveled by an object.
Copyright © Cengage Learning. All rights reserved. 4 Integrals.
4-2 AREA AP CALCULUS – MS. BATTAGLIA. SIGMA NOTATION The sum of n terms a 1, a 2, a 3,…, a n is written as where i is the index of summation, a i is the.
Chapter Six Overview Applications of the Definite Integral in Geometry, Science, and Engineering.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Volumes by Slicing: Disks and Washers
Integration: “Evaluating Definite Integrals by Substitution”
Slope Fields; Euler’s Method
Copyright © Cengage Learning. All rights reserved.
AREA Section 4.2.
AREA Section 4.2.
Presentation transcript:

Integration: “the Definition of Area as a Limit; Sigma Notation” Section 5.4 Integration: “the Definition of Area as a Limit; Sigma Notation”

All graphics are attributed to: Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Introduction Our main goal in this section is to use the rectangle method we discussed in section 5.1 to give a precise mathematical definition of the “area under a curve”. You probably remember sigma notation from Algebra II or PreCalculus. We use the Greek letter sigma to denote sums: m is called the lower limit of summation and n is called the upper limit of summation. k is called the index of summation and some books use different letters.

Changing the Limits of Summation A sum can be written in more than one way using sigma notation with different limits of summation and correspondingly different summands to fit the needs of the problem you are trying to solve. Each sigma notation below means the same thing: On occasion, we will want to change the sigma notation for a given sum to a sigma notation with different limits of summation.

Properties of Sums We have seen very similar properties for limits, derivatives, and integrals, since they are all related.

Summation Formulas We will be using these frequently in this section, but you do not need to memorize them this year. 

A Definition of Area We are going to be dealing with functions that are continuous and nonnegative on an interval [a,b] at first. We are trying to find the area of the blue shaded region bounded above by the curve y=f(x), bounded below by the x-axis, and bounded on the sided by the vertical lines x=a and x=b. We will divide that interval into n equal subintervals as you can see in the picture:

A Definition of Area - continued The distance between a and b is b-a. Since we divided that distance into n subintervals, each is : In each subinterval, draw a rectangle whose height is the value of the function f(x) at an arbitrarily selected point in the subinterval (a.k.a. xk*) which gives f(xk*). Since the area of each rectangle is base * height, we get the formula you see on the right for each rectangle: Area= b*h = x * f(xk*) = f(xk*) x .

A Definition of Area - continued Remember, that was the area for each rectangle. We need to find the sum of the areas of all of the rectangles between a and b which is why we use sigma notation. As we discussed in a previous section, the area estimate is more accurate with the more number of rectangles used. Therefore, we will let n approach infinity.

Choices for xk* xk* can be chosen arbitrarily, but for this year we will either choose each to be the left endpoint of each subinterval, the right endpoint of each subinterval, or the midpoint of each subinterval. You can see what that looks like in the following graphs:

How our choice of xk* affects these problems: Keep this list handy so that you know what to substitute in for xk* depending upon whether you are using the left endpoint, right endpoint, or midpoint (they are on page 345 in your book).

Example of how to use all of this information:

Another Example Step 1: Use the formula Step 2: Pick the appropriate xk* from slide #13 for the problem you are working on. Step 3: Substitute the results from #1&2 into f(xk*) x. Step 4: Then take the limit of the sum of that product as the number of rectangles (n) approaches infinity and simplify.

Other Helpful Limits These formulas will often help to make the solution shorter.

Net Signed Area Net signed area takes into account whether the area(s) is above or below the x-axis. To find the total area instead, you will have to break the area up into portions that are above the x-axis vs. those that are below the x-axis and find each area separately. After taking their absolute values, you may then add them together (see picture on next slide).

Net Signed Area Example

Rialto Bridge – Venice, Italy