Chapter 11 Analysis of Variance

Slides:



Advertisements
Similar presentations
Design of Experiments and Analysis of Variance
Advertisements

Statistics for Managers Using Microsoft® Excel 5th Edition
Part I – MULTIVARIATE ANALYSIS
Chapter 11 Analysis of Variance
Statistics for Business and Economics
Chapter Topics The Completely Randomized Model: One-Factor Analysis of Variance F-Test for Difference in c Means The Tukey-Kramer Procedure ANOVA Assumptions.
Chapter 3 Analysis of Variance
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 17 Analysis of Variance
One-way Between Groups Analysis of Variance
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 15 Analysis of Variance.
Chapter 11 Analysis of Variance
Copyright ©2011 Pearson Education 11-1 Chapter 11 Analysis of Variance Statistics for Managers using Microsoft Excel 6 th Global Edition.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
Chap 10-1 Analysis of Variance. Chap 10-2 Overview Analysis of Variance (ANOVA) F-test Tukey- Kramer test One-Way ANOVA Two-Way ANOVA Interaction Effects.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 11-1 Chapter 11 Analysis of Variance Statistics for Managers using Microsoft Excel.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 12-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 12 Analysis.
F-Test ( ANOVA ) & Two-Way ANOVA
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 30 日 第八週:變異數分析與實驗設計.
Statistics for Business and Economics Chapter 8 Design of Experiments and Analysis of Variance.
QNT 531 Advanced Problems in Statistics and Research Methods
1 1 Slide © 2005 Thomson/South-Western Chapter 13, Part A Analysis of Variance and Experimental Design n Introduction to Analysis of Variance n Analysis.
INFERENTIAL STATISTICS: Analysis Of Variance ANOVA
© 2003 Prentice-Hall, Inc.Chap 11-1 Analysis of Variance IE 340/440 PROCESS IMPROVEMENT THROUGH PLANNED EXPERIMENTATION Dr. Xueping Li University of Tennessee.
Chapter 10 Two-Sample Tests and One-Way ANOVA
© 2002 Prentice-Hall, Inc.Chap 9-1 Statistics for Managers Using Microsoft Excel 3 rd Edition Chapter 9 Analysis of Variance.
Chapter 11 HYPOTHESIS TESTING USING THE ONE-WAY ANALYSIS OF VARIANCE.
© Copyright McGraw-Hill CHAPTER 12 Analysis of Variance (ANOVA)
CHAPTER 12 Analysis of Variance Tests
Chapter 10 Analysis of Variance.
© 2003 Prentice-Hall, Inc.Chap 11-1 Analysis of Variance & Post-ANOVA ANALYSIS IE 340/440 PROCESS IMPROVEMENT THROUGH PLANNED EXPERIMENTATION Dr. Xueping.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Analysis of Variance.
Business Statistics: Contemporary Decision Making, 3e, by Black. © 2001 South-Western/Thomson Learning 11-1 Business Statistics, 3e by Ken Black Chapter.
ENGR 610 Applied Statistics Fall Week 9
TOPIC 11 Analysis of Variance. Draw Sample Populations μ 1 = μ 2 = μ 3 = μ 4 = ….. μ n Evidence to accept/reject our claim Sample mean each group, grand.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests and One-Way ANOVA Business Statistics, A First.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
Chapter 19 Analysis of Variance (ANOVA). ANOVA How to test a null hypothesis that the means of more than two populations are equal. H 0 :  1 =  2 =
Lecture 9-1 Analysis of Variance
Analysis of Variance (One Factor). ANOVA Analysis of Variance Tests whether differences exist among population means categorized by only one factor or.
Previous Lecture: Phylogenetics. Analysis of Variance This Lecture Judy Zhong Ph.D.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 15 Analysis of Variance.
Chapter 11 Analysis of Variance. 11.1: The Completely Randomized Design: One-Way Analysis of Variance vocabulary –completely randomized –groups –factors.
Business Statistics: A First Course (3rd Edition)
Chapter 4 Analysis of Variance
Chap 11-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 11 Analysis of Variance.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests and One-Way ANOVA Business Statistics, A First.
Copyright © 2016, 2013, 2010 Pearson Education, Inc. Chapter 10, Slide 1 Two-Sample Tests and One-Way ANOVA Chapter 10.
CHAPTER 10 ANOVA - One way ANOVa.
Formula for Linear Regression y = bx + a Y variable plotted on vertical axis. X variable plotted on horizontal axis. Slope or the change in y for every.
ENGR 610 Applied Statistics Fall Week 8 Marshall University CITE Jack Smith.
Chapter 8 Analysis of METOC Variability. Contents 8.1. One-factor Analysis of Variance (ANOVA) 8.2. Partitioning of METOC Variability 8.3. Mathematical.
Chapter 11 Analysis of Variance
Chapter 10 Two-Sample Tests and One-Way ANOVA.
Statistics for Managers Using Microsoft Excel 3rd Edition
Two-Way Analysis of Variance Chapter 11.
Factorial Experiments
ANOVA Econ201 HSTS212.
Applied Business Statistics, 7th ed. by Ken Black
Statistics for Business and Economics (13e)
Chapter 10 Two-Sample Tests and One-Way ANOVA.
Chapter 11 Analysis of Variance
Chapter 9 Analysis of Variance
Chapter 15 Analysis of Variance
Chapter 10 – Part II Analysis of Variance
Presentation transcript:

Chapter 11 Analysis of Variance Business Statistics: A Decision-Making Approach 6th Edition Chapter 11 Analysis of Variance Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chapter Goals After completing this chapter, you should be able to: Recognize situations in which to use analysis of variance Understand different analysis of variance designs Perform a single-factor hypothesis test and interpret results Conduct and interpret post-analysis of variance pairwise comparisons procedures Set up and perform randomized blocks analysis Analyze two-factor analysis of variance test with replications results Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Analysis of Variance (ANOVA) Chapter Overview Analysis of Variance (ANOVA) One-Way ANOVA Randomized Complete Block ANOVA Two-factor ANOVA with replication F-test F-test Tukey- Kramer test Fisher’s Least Significant Difference test Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

General ANOVA Setting Investigator controls one or more independent variables Called factors (or treatment variables) Each factor contains two or more levels (or categories/classifications) Observe effects on dependent variable Response to levels of independent variable Experimental design: the plan used to test hypothesis Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Way Analysis of Variance Evaluate the difference among the means of three or more populations Examples: Accident rates for 1st, 2nd, and 3rd shift Expected mileage for five brands of tires Assumptions Populations are normally distributed Populations have equal variances Samples are randomly and independently drawn Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Completely Randomized Design Experimental units (subjects) are assigned randomly to treatments Only one factor or independent variable With two or more treatment levels Analyzed by One-factor analysis of variance (one-way ANOVA) Called a Balanced Design if all factor levels have equal sample size Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Hypotheses of One-Way ANOVA All population means are equal i.e., no treatment effect (no variation in means among groups) At least one population mean is different i.e., there is a treatment effect Does not mean that all population means are different (some pairs may be the same) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

The Null Hypothesis is True One-Factor ANOVA All Means are the same: The Null Hypothesis is True (No Treatment Effect) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Factor ANOVA At least one mean is different: (continued) At least one mean is different: The Null Hypothesis is NOT true (Treatment Effect is present) or Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Partitioning the Variation Total variation can be split into two parts: SST = SSB + SSW SST = Total Sum of Squares SSB = Sum of Squares Between SSW = Sum of Squares Within Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Partitioning the Variation (continued) SST = SSB + SSW Total Variation = the aggregate dispersion of the individual data values across the various factor levels (SST) Between-Sample Variation = dispersion among the factor sample means (SSB) Within-Sample Variation = dispersion that exists among the data values within a particular factor level (SSW) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Partition of Total Variation Total Variation (SST) Variation Due to Factor (SSB) + Variation Due to Random Sampling (SSW) = Commonly referred to as: Sum of Squares Between Sum of Squares Among Sum of Squares Explained Among Groups Variation Commonly referred to as: Sum of Squares Within Sum of Squares Error Sum of Squares Unexplained Within Groups Variation Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Total Sum of Squares SST = SSB + SSW Where: SST = Total sum of squares k = number of populations (levels or treatments) ni = sample size from population i xij = jth measurement from population i x = grand mean (mean of all data values) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Total Variation (continued) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Sum of Squares Between SST = SSB + SSW k = number of populations Where: SSB = Sum of squares between k = number of populations ni = sample size from population i xi = sample mean from population i x = grand mean (mean of all data values) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Between-Group Variation Variation Due to Differences Among Groups Mean Square Between = SSB/degrees of freedom Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Between-Group Variation (continued) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Sum of Squares Within SST = SSB + SSW k = number of populations Where: SSW = Sum of squares within k = number of populations ni = sample size from population i xi = sample mean from population i xij = jth measurement from population i Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Within-Group Variation Summing the variation within each group and then adding over all groups Mean Square Within = SSW/degrees of freedom Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Within-Group Variation (continued) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Way ANOVA Table Source of Variation SS df MS F ratio Between Samples SSB MSB SSB k - 1 MSB = F = k - 1 MSW Within Samples SSW SSW N - k MSW = N - k SST = SSB+SSW Total N - 1 k = number of populations N = sum of the sample sizes from all populations df = degrees of freedom Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Factor ANOVA F Test Statistic H0: μ1= μ2 = … = μ k HA: At least two population means are different Test statistic MSB is mean squares between variances MSW is mean squares within variances Degrees of freedom df1 = k – 1 (k = number of populations) df2 = N – k (N = sum of sample sizes from all populations) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Interpreting One-Factor ANOVA F Statistic The F statistic is the ratio of the between estimate of variance and the within estimate of variance The ratio must always be positive df1 = k -1 will typically be small df2 = N - k will typically be large The ratio should be close to 1 if H0: μ1= μ2 = … = μk is true The ratio will be larger than 1 if H0: μ1= μ2 = … = μk is false Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Factor ANOVA F Test Example Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the .05 significance level, is there a difference in mean distance? Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Factor ANOVA Example: Scatter Diagram Distance 270 260 250 240 230 220 210 200 190 Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 • • • • • • • • • • • • • • • 1 2 3 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Club

One-Factor ANOVA Example Computations Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 x1 = 249.2 x2 = 226.0 x3 = 205.8 x = 227.0 n1 = 5 n2 = 5 n3 = 5 N = 15 k = 3 SSB = 5 [ (249.2 – 227)2 + (226 – 227)2 + (205.8 – 227)2 ] = 4716.4 SSW = (254 – 249.2)2 + (263 – 249.2)2 +…+ (204 – 205.8)2 = 1119.6 MSB = 4716.4 / (3-1) = 2358.2 MSW = 1119.6 / (15-3) = 93.3 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

One-Factor ANOVA Example Solution Test Statistic: Decision: Conclusion: H0: μ1 = μ2 = μ3 HA: μi not all equal  = .05 df1= 2 df2 = 12 Critical Value: F = 3.885 Reject H0 at  = 0.05  = .05 There is evidence that at least one μi differs from the rest Do not reject H0 Reject H0 F = 25.275 F.05 = 3.885 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

ANOVA -- Single Factor: Excel Output EXCEL: tools | data analysis | ANOVA: single factor SUMMARY Groups Count Sum Average Variance Club 1 5 1246 249.2 108.2 Club 2 1130 226 77.5 Club 3 1029 205.8 94.2 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 4716.4 2 2358.2 25.275 4.99E-05 3.885 Within 1119.6 12 93.3 Total 5836.0 14   Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

The Tukey-Kramer Procedure Tells which population means are significantly different e.g.: μ1 = μ2  μ3 Done after rejection of equal means in ANOVA Allows pair-wise comparisons Compare absolute mean differences with critical range μ μ μ x = 1 2 3 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Tukey-Kramer Critical Range where: q = Value from standardized range table with k and N - k degrees of freedom for the desired level of  MSW = Mean Square Within ni and nj = Sample sizes from populations (levels) i and j Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

The Tukey-Kramer Procedure: Example 1. Compute absolute mean differences: Club 1 Club 2 Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 2. Find the q value from the table in appendix J with k and N - k degrees of freedom for the desired level of  Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

The Tukey-Kramer Procedure: Example 3. Compute Critical Range: 4. Compare: 5. All of the absolute mean differences are greater than critical range. Therefore there is a significant difference between each pair of means at 5% level of significance. Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Tukey-Kramer in PHStat Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Randomized Complete Block ANOVA Like One-Way ANOVA, we test for equal population means (for different factor levels, for example)... ...but we want to control for possible variation from a second factor (with two or more levels) Used when more than one factor may influence the value of the dependent variable, but only one is of key interest Levels of the secondary factor are called blocks Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Partitioning the Variation Total variation can now be split into three parts: SST = SSB + SSBL + SSW SST = Total sum of squares SSB = Sum of squares between factor levels SSBL = Sum of squares between blocks SSW = Sum of squares within levels Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Sum of Squares for Blocking SST = SSB + SSBL + SSW Where: k = number of levels for this factor b = number of blocks xj = sample mean from the jth block x = grand mean (mean of all data values) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Partitioning the Variation Total variation can now be split into three parts: SST = SSB + SSBL + SSW SST and SSB are computed as they were in One-Way ANOVA SSW = SST – (SSB + SSBL) Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Mean Squares Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Randomized Block ANOVA Table Source of Variation SS df MS F ratio MSBL Between Blocks SSBL b - 1 MSBL MSW Between Samples MSB SSB k - 1 MSB MSW Within Samples SSW (k–1)(b-1) MSW Total SST N - 1 k = number of populations N = sum of the sample sizes from all populations b = number of blocks df = degrees of freedom Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Blocking Test Reject H0 if F > F MSBL F = MSW Blocking test: df1 = b - 1 df2 = (k – 1)(b – 1) MSW Reject H0 if F > F Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Main Factor Test Reject H0 if F > F MSB F = MSW Main Factor test: df1 = k - 1 df2 = (k – 1)(b – 1) MSW Reject H0 if F > F Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Fisher’s Least Significant Difference Test To test which population means are significantly different e.g.: μ1 = μ2 ≠ μ3 Done after rejection of equal means in randomized block ANOVA design Allows pair-wise comparisons Compare absolute mean differences with critical range    x = 1 2 3 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Fisher’s Least Significant Difference (LSD) Test where: t/2 = Upper-tailed value from Student’s t-distribution for /2 and (k -1)(n - 1) degrees of freedom MSW = Mean square within from ANOVA table b = number of blocks k = number of levels of the main factor Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Fisher’s Least Significant Difference (LSD) Test (continued) Compare: If the absolute mean difference is greater than LSD then there is a significant difference between that pair of means at the chosen level of significance. Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA Examines the effect of Two or more factors of interest on the dependent variable e.g.: Percent carbonation and line speed on soft drink bottling process Interaction between the different levels of these two factors e.g.: Does the effect of one particular percentage of carbonation depend on which level the line speed is set? Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA Assumptions Populations are normally distributed (continued) Assumptions Populations are normally distributed Populations have equal variances Independent random samples are drawn Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA Sources of Variation Two Factors of interest: A and B a = number of levels of factor A b = number of levels of factor B N = total number of observations in all cells Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA Sources of Variation (continued) SST = SSA + SSB + SSAB + SSE Degrees of Freedom: SSA Variation due to factor A a – 1 SST Total Variation SSB Variation due to factor B b – 1 SSAB Variation due to interaction between A and B (a – 1)(b – 1) N - 1 SSE Inherent variation (Error) N – ab Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two Factor ANOVA Equations Total Sum of Squares: Sum of Squares Factor A: Sum of Squares Factor B: Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two Factor ANOVA Equations (continued) Sum of Squares Interaction Between A and B: Sum of Squares Error: Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two Factor ANOVA Equations (continued) where: a = number of levels of factor A b = number of levels of factor B n’ = number of replications in each cell Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Mean Square Calculations Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA: The F Test Statistic F Test for Factor A Main Effect H0: μA1 = μA2 = μA3 = • • • HA: Not all μAi are equal Reject H0 if F > F F Test for Factor B Main Effect H0: μB1 = μB2 = μB3 = • • • HA: Not all μBi are equal Reject H0 if F > F F Test for Interaction Effect H0: factors A and B do not interact to affect the mean response HA: factors A and B do interact Reject H0 if F > F Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Two-Way ANOVA Summary Table Source of Variation Sum of Squares Degrees of Freedom Mean Squares F Statistic Factor A SSA a – 1 MSA = SSA /(a – 1) MSA MSE Factor B SSB b – 1 MSB = SSB /(b – 1) MSB MSE AB (Interaction) SSAB (a – 1)(b – 1) MSAB = SSAB / [(a – 1)(b – 1)] MSAB MSE Error SSE N – ab MSE = SSE/(N – ab) Total SST N – 1 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Features of Two-Way ANOVA F Test Degrees of freedom always add up N-1 = (N-ab) + (a-1) + (b-1) + (a-1)(b-1) Total = error + factor A + factor B + interaction The denominator of the F Test is always the same but the numerator is different The sums of squares always add up SST = SSE + SSA + SSB + SSAB Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Examples: Interaction vs. No Interaction Interaction is present: No interaction: Factor B Level 1 Factor B Level 1 Factor B Level 3 Mean Response Mean Response Factor B Level 2 Factor B Level 2 Factor B Level 3 Factor A Levels 1 Factor A Levels 1 2 2 Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chapter Summary Described one-way analysis of variance The logic of ANOVA ANOVA assumptions F test for difference in k means The Tukey-Kramer procedure for multiple comparisons Described randomized complete block designs F test Fisher’s least significant difference test for multiple comparisons Described two-way analysis of variance Examined effects of multiple factors and interaction Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.