Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 18 Introduction to 2 nd Law and Entropy.

Slides:



Advertisements
Similar presentations
Entropy Balance Equation
Advertisements

Advanced Thermodynamics Note 4 The Second Law of Thermodynamics
Chapter 18 The Second Law of Thermodynamics. Irreversible Processes Irreversible Processes: always found to proceed in one direction Examples: free expansion.
The Second Law of Thermodynamics
Lec 17: Carnot principles, entropy
Dr. Jie ZouPHY Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics.
The Second Law of Thermodynamics Chapter Introduction The first law of thermodynamics is simple, general, but does not constitute a complete theory.
EGR 334 Thermodynamics Chapter 5: Sections 1-9
The Second Law of Thermodynamics Chapter 7.  The first law of thermodynamics states that during any cycle that a system undergoes, the cyclic integral.
Thermodynamics I MECN 4201 Professor: Dr. Omar E. Meza Castillo
Thermodynamics Chapter 15. Expectations After this chapter, students will:  Recognize and apply the four laws of thermodynamics  Understand what is.
Reversible Processes The second law of thermodynamics state that no heat engine can have an efficiency of 100%. Then one may ask, what is the highest efficiency.
Thermodynamics I Chapter 5 Second Law of Thermodynamics Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia.
Topic 10.3 Second Law of Thermodynamics and Entropy
Heat Engines, Entropy and the Second Law of Thermodynamics
The second law of thermodynamics: The heat flow statement: Heat flows spontaneously from a substance at a higher temperature to a substance at a lower.
Dr.Salwa Al Saleh Lecture 9 Thermodynamic Systems Specific Heat Capacities Zeroth Law First Law.
C H A P T E R 15 Thermodynamics The Second Law of Thermodynamics Heat flows spontaneously from a substance at a higher temperature to a substance.
Lecture slides by Mehmet Kanoglu
Heat, Work, and Internal Energy Thermodynamic Processes.
Chapter 5 The Second Law of Thermodynamics. Learning Outcomes ►Demonstrate understanding of key concepts related to the second law of thermodynamics,
CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS
Limitation of the 1st law of thermodynamics
Review for Exam 2.
ERT 108 Physical Chemistry The Second Law of Thermodynamics by Miss Anis Atikah binti Ahmad
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
ChemE 260 The 2 nd Law of Thermodynamics April 26, 2005 Dr. William Baratuci Senior Lecturer Chemical Engineering Department University of Washington TCD.
Heat Engines and The Carnot Cycle. First Statement of the Second Law of Thermodynamics The first statement of the second law is a statement from common.
Important Terms & Notes Conceptual Physics Mar. 17, 2014.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Topic 3 The second law of thermodynamics Predict the direction of changes.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Thermodynamic cycles 2nd law of Thermodynamics Carnot Cycle Lecture 30: 2nd Law of Thermodynamics.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Internal Energy (U): A measure of energy at a macroscopic level due to the molecular translation, vibration, rotation (an Extensive Property). Internal.
Lecture 5 – The Second Law (Ch. 2)
Chapter 20 Entropy and the Second Law of Thermodynamics 20.1 Some one-way processes Which is closer to ‘common’ sense? Ink diffusing in a beaker of water.
Entropy, the Second and Third Law of Thermodynamics By Doba Jackson, Ph.D. Associate Professor of Chemistry and Biochemistry Huntingdon College.
PHY203: Thermal Physics Topic 4: Second Law of Thermodynamics Heat Engines Statements of the Second Law (Kelvin, Clausius) Carnot Cycle Efficiency of a.
CHAPTER 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
PHY1039 Properties of Matter Heat Engines, Thermodynamic Efficiency, and Carnot Cycles April 30 and May 3, 2012 Lectures 17 and 18.
ENTROPY AND THIRD LAW OF THERMODYNAMICS. 2 ND LAW OF THERMODYNAMICS  Kelvin-Planck Statement  It is impossible to construct an engine which operating.
Thermodynamics I Inter - Bayamon Lecture 7 Thermodynamics I MECN 4201 Professor: Dr. Omar E. Meza Castillo
Second Law It is impossible to construct a device which operating in a cycle will produce no effect other than transfer of heat from a cooler to a hotter.
Chapter 18 Second Law of Thermodynamics. Introduction 2 First law → conservation of energy Processes that conserve energy may not occur 400K300K heat.
Chapter 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
Chapter 12 Laws of Thermodynamics. Chapter 12 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Physics 101 Lecture 11. Thermal Physics Thermodynamics.
L.C. INSTITUTE OF TECHNOLOGY BHANDU. Ch.2  Ch.2 Second Law of Second Law of Thermodynamics Thermodynamics.
SUBJECT : Engineering Thermodynamics. UNIT : Entropy Prepared by NAMEENROLLMENT NO SUNILKUMAR PATEL UTSAVKUMAR PATEL VAIDIK PATEL
Science about Heat Before starting this story You have to know Force → Energy.
Chapter 7 THE SECOND LAW OF THERMODYNAMICS
First and Second Law of Thermodynamics
Chapter: 07 ENTROPY.
Chapter: 06 The Second Law.
G.K.BHARAD INSTITUTE OF ENGINEERING(059)
Equivalence of the Two Statements
Government Engineering College, Patan
Kelvin – Planck and Clausius Statement
REVERSIBLE AND IRREVERSIBLE PROCESSES
The Laws of Thermodynamics
Second Law of Thermodynamics
Topic 10.3 Second Law of Thermodynamics and Entropy
Heat Engines Entropy The Second Law of Thermodynamics
Chapter Seven: Entropy
Review for Exam 2.
Second Law of Thermodynamics
The Second Law of Thermodynamics
Equivalence of the Two Statements
Presentation transcript:

Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 18 Introduction to 2 nd Law and Entropy

Example 2 Consider an adiabatic compressor steadily moving R125, Really? A compressor that compresses a refrigerant and delivers power? Can I invest my money in this idea?

The Second Law of Thermodynamics The First Law analysis is correct! –The First Law is an energy book keeper The Second Law is not being obeyed! –The Second Law is the energy transformation police 3 Before you invest in the contraption on the previous slide, recall the Second Law of Thermodynamics. Energy can only be transformed. The transformation of energy always proceeds from a condition of very useful energy to less useful energy. The Second Law dictates how energy can be transformed. Conclusions with the compressor example …

What is Entropy? A thermodynamic property –Total entropy = S (upper case letter) –Specific entropy = s (lower case letter) An indication of molecular disorder –High values = high molecular disorder Gases –Low values = low molecular disorder Solids A quantity that can be produced but not destroyed within a system undergoing a process –Entropy is not a conserved quantity! 4

What is Entropy? Entropy is produced in a process by virtue of irreversibilities –mechanical friction, fluid friction, heat transfer, mixing, electrical resistance, chemical reactions... Irreversibilities are present in all real-world systems and processes Reversible processes –Free of entropy production –Do not exist – they are idealizations The Third Law of Thermodynamics –The entropy of a perfect crystalline substance at absolute zero is zero! Provides a universal datum state for entropy 5

The Second Law Pioneers 6 Rudolph Clausius ( ) Sadi Carnot ( ) William Thomson (Lord Kelvin) ( ) William Rankine ( ) Carnot Cycles Defined Entropy

The Kelvin-Planck Statement 7 It is impossible to construct a device that operates in a thermodynamic cycle and delivers a net amount of energy as work to its surroundings while receiving energy by heat from a single reservoir. Thermal Reservoir This is impossible! C Implication: No heat engine can ever operate with an energy conversion efficiency of 100%

Carnot’s Heat Engine The energy conversion (thermal) efficiency of an irreversible heat engine is always less than the thermal efficiency of a reversible heat engine operating between the same thermal energy reservoirs Reversible engines operating between the same thermal energy reservoirs have the same thermal efficiency –The reversible engine is not dependent on the working fluid 8 Carnot hypothesized...

Analysis of the Carnot Heat Engine 9 Kelvin and Rankine suggested that, Therefore, the thermal efficiency of a Carnot Heat Engine is, Temperatures must be on the absolute scale! This is the maximum efficiency of a heat engine!

The Clausius Statement 10 It is impossible for any system to operate in such a way that the energy transfer by heat from a cooler body to a hotter body occurs without the input of work. System Cold Hot This is impossible!

Carnot’s Refrigerator The thermal efficiency of an irreversible refrigerator is always less than the thermal efficiency of a reversible refrigerator operating between the same thermal energy reservoirs Reversible refrigerators operating between the same thermal energy reservoirs have the same thermal efficiency –The reversible refrigerator is not dependent on the working fluid 11 Carnot hypothesized...

Analysis of the Carnot Refrigerator 12 For the Refrigeration cycle … For the Heat Pump cycle …

Thinking like Clausius 13 My colleagues, Kelvin and Rankine, have proposed that for a Carnot heat engine, I can rewrite this expression as, An alternative way to write this is,

Thinking like Clausius 14 I have to remember that these expressions have been developed for a Carnot cycle. Since we are considering a cycle that is reversible, it must be true that, I know that if the cyclic integral of a differential quantity is zero, the quantity must be a property. Therefore, it must be true that, is the differential of a property!

Thinking like Clausius 15 I know that dQ is not a property, but ( dQ / T ) for a reversible process is a property! Since I discovered this property, I choose to call it entropy and give it the symbol, S. Therefore, In 1865, Clausius wrote, “We might call S the transformational content of the body, just as we have termed the quantity U the heat and work content of the body. But since I believe it is better to borrow terms for important quantities from the ancient languages so that they may be adopted unchanged in all modern languages, I propose to call the quantity S the entropy of the body, from the Greek , meaning a transformation.”

The Inequality of Clausius 16 Clausius demonstrated that for a closed reversible process, It can be shown that for a closed irreversible process (Sec 7.7) Therefore, for any closed process, This is known as the Inequality of Clausius