Section 07
Impedance treat all passive components as resistors but with complex resistances Electrical EngineeringUmm Al-Qura UniversitySlide 2
Impedance What is the impedance of a 10 F capacitor when operated at 60Hz? What is the impedance of a 2mH inductor when operated at 60Hz? Electrical EngineeringUmm Al-Qura UniversitySlide 3
Laplace Domain When Mixing AC and DC sources Multiple different frequencies use Laplace instead of Fourier jw s Initial conditions Electrical EngineeringUmm Al-Qura UniversitySlide 4
Complex AC Source AC Volt or Current has: Amplitude Frequency Phase Phase can be expressed in Complex Number Electrical EngineeringUmm Al-Qura UniversitySlide 5
Complex AC Source Electrical EngineeringUmm Al-Qura UniversitySlide 6
Example Electrical EngineeringUmm Al-Qura UniversitySlide 7
Solution Electrical EngineeringUmm Al-Qura UniversitySlide 8
Simulation Solution Electrical EngineeringUmm Al-Qura UniversitySlide 9
Section 08
Contents Generators Square, Sine, Triangle, Pulse Generators Converters AC/DC Analog/Digital Protection Circuits Voltage/Current Limiter Reverse Polarity ESD Protection Electrical EngineeringUmm Al-Qura UniversitySlide 11
Contents Math Circuits General adders (mixers) Integrators, Differentiator Transfer Functions Filters Low/High Pass Filters Band Pass/Stop Filters Electrical EngineeringUmm Al-Qura UniversitySlide 12
Format 1. Circuits Schematic 2. Function 3. Usage 4. Design Equations Electrical EngineeringUmm Al-Qura UniversitySlide 13
Note!! Some are Conceptual Designs Consider Ready-Made IC’s available Or even PCBs Electrical EngineeringUmm Al-Qura UniversitySlide 14
Op-Amp Needs Dual Power Supply Multiple op-amps in one IC Electrical EngineeringUmm Al-Qura UniversitySlide 15
(1) Square Wave Generator Electrical EngineeringUmm Al-Qura UniversitySlide 16
Slide 17
(2) Pulse Generator Electrical EngineeringUmm Al-Qura UniversitySlide 18
(3) AC/DC Converter Electrical EngineeringUmm Al-Qura UniversitySlide 19 VDVD
Example design an AC/DC converter to: Produce 8.4 VDC Ripples 1% Diodes available V D =0.6V Maximum load expected 2k Electrical EngineeringUmm Al-Qura UniversitySlide 20
Clipping Protection Electrical EngineeringUmm Al-Qura UniversitySlide 21
ESD Protection Simple Parallel Discharging Zener Diode Special Diodes for High speed Lines Electrical EngineeringUmm Al-Qura UniversitySlide 22
General Adder (Mixer) Electrical EngineeringUmm Al-Qura UniversitySlide 23
Slide 24 the integrator produces a voltage output proportional to the product (multiplication) of the input voltage and time the differentiator produces a voltage output proportional to the input voltage's rate of change.
Integrator Electrical EngineeringUmm Al-Qura UniversitySlide 25
Differentiator Electrical EngineeringUmm Al-Qura UniversitySlide 26
Filters Electrical EngineeringUmm Al-Qura UniversitySlide 27
Slide 28 A differentiator circuit produce s a constant output voltage for a steadily changing input voltage. An integrator circuit produces a steadily changing output voltage for a constant input voltage.
Process Check What circuits did you face in your field? Do you need more details? Where to find more Designs? Electrical EngineeringUmm Al-Qura UniversitySlide 29
Section 09
Power Transmission Electrical EngineeringUmm Al-Qura UniversitySlide 31
Slide 32
Transformer Slide 33 A transformer is an electrical device that transfers power from one electrical circuit to another by magnetic coupling It is most often used to convert between high and low voltages Must be AC current; a transformer does not convert DC Uses Faraday’s law and ferromagnetic properties
Slide 34
Ideal Transformer Electrical EngineeringUmm Al-Qura UniversitySlide 35
Example Electrical EngineeringUmm Al-Qura UniversitySlide 36
Example Electrical EngineeringUmm Al-Qura UniversitySlide 37 v1v1
Activity Slide 38
Section 010
DC Machines Can we use the magnetic force to rotate something? Slide 40
Basic Concept Slide 41 Source:
DC Machines Examples microwave fan hi-fi tape deck fridge mixer washing machine tumble dryer vacuum computers electric saw drill screwdriver leaf blower toothbrush hair dryer razor CD player video player clocks pond pumps toys Slide 42
Electric Machine Parts Slide 43
Electric Machine Parts Slide 44
Two-Pole DC Machine Slide 45
Four-Pole DC Machine Slide 46
Commutator Slide 47
Generated Voltage Slide 48
DC Motor Variables Slide 49 E A (volt)is the back EMF V T (volt)is the applied voltage T dev (N.m)is the torque developed by DC Motor T load (N.m)is the opposing load torque m (rad/s)is the armature shaft speed = 2 rpm /60 R a ( )is the motor internal resistance I A (A)is the motor current
DC Generator Variables Slide 50 E A (volt)is the generated voltage V T (volt)is the load voltage T pm (N.m)is the prime-mover generated torque T dev (N.m)is the opposing motor torque m (rad/s)is the armature shaft speed = 2 rpm /60 R a ( )is the motor internal resistance I A (A)is the motor current
DC Machine Equations Slide 51 E A (volt)is the generated voltage T dev (N.m)is the motor torque m (rad/s)is the armature shaft speed = 2 rpm /60 I A (A)is the motor current Kis the machine constant (Wb)is the magnetic flux per pole
Power Electric Power: Mechanical Power: Slide 52
Ideal DC Machine Motor IN:Electric Power OUT:Mechanical Power Slide 53
Ideal DC Machine Generator IN:Mechanical Power OUT:Electric Power Slide 54
Motor Example A DC motor having R a = 0.2 , I A = 5A, V T = 220V, m = 1200 rpm What is: back EMF voltage? developed torque? developed power? Slide 55
Generator Example A DC generator having P mech = 1kW, R a = 0.3 , R L = 10 What is: electric current drawn? terminal voltage? Slide 56