Graphing Linear Functions

Slides:



Advertisements
Similar presentations
Warm Up Solve each equation for y. 1. 7x + 2y = 6 2.
Advertisements

Lines in the Coordinate Plane
Linear Equations in Two Variables
Writing and Graphing Linear Equations
4.1 Introduction to Linear Equations in Two Variables
Slope-Intercept Form 5-7 Warm Up Lesson Presentation Lesson Quiz
Rectangular Coordinate System
Objectives Use slope-intercept form and point-slope form to write linear functions. Write linear functions to solve problems. Recall from Lesson 2-3 that.
Objectives Find the two intercepts Graph a line using intercepts
Do Now Find the slope of the line passing through the given points. 1)( 3, – 2) and (4, 5) 2)(2, – 7) and (– 1, 4)
Bell Work Solve for “y” 1.) 3x – 2y = -8 2.) 5x – y + 12 = 3x ) 3x – 4y = -7y – 12.
Unit 3 Linear Functions and Patterns
Writing Linear Functions
Objectives Determine whether a function is linear.
Gold Day – 2/24/2015 Blue Day – 2/25/2015.  Unit 5 – Linear functions and Applications  Review – slope, slope intercept form  Standard Form  Finding.
Objectives Determine whether a function is linear.
Bell Ringer 10/8/14.
Writing Linear Functions
Graphing Linear Equations
Slope and Rate of Change
1. Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graphing Linear Equations and Inequalities CHAPTER 4.1The Rectangular.
Warm Up Alice finds her flower bulbs multiply each year. She started with just 24 tulip plants. After one year she had 72 plants. Two years later she had.
PRE-ALGEBRA. Lesson 8-3 Warm-Up PRE-ALGEBRA What is “rate of change” How can you find the “rate of change”? rate of change: a unit rate that tells how.
Holt Algebra Graphing Linear Functions Meteorologists begin tracking a hurricane's distance from land when it is 350 miles off the coast of Florida.
Holt Algebra Graphing Linear Functions 2-3 Graphing Linear Functions Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Thinking Mathematically Algebra: Graphs, Functions and Linear Systems 7.2 Linear Functions and Their Graphs.
Equations of Lines and Graphing Them Equations of Lines Vertical line x = # Horizontal line y = # Slope, y-intercept y=mx+b Standard Form Ax+By = C using.
4.1 Coordinates Objective: To plot points and name points in the coordinate plane. A coordinate plane is formed by two real number lines that intersect.
Chapter 5 LINEAR FUNCTIONS. Section 5-1 LINEAR FUNCTION – A function whose graph forms a straight line.  Linear functions can describe many real- world.
Welcome to MM 212 Unit 4 Seminar!. Graphing and Functions.
Chapter 8 Review.
Slope of a Line Chapter 7.3. Slope of a Line m = y 2 – y 1 x 2 – x 1 m = rise run m = change in y change in x Given two points (x 1, y 1 ) and (x 2, y.
Warm-up Presentation Lesson Quiz
Graphing Linear Functions 1. graph linear functions. 2. write equations in standard form.
Graphing Linear Equations
Chapter 2 - Linear Functions
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Slope-Intercept Form 4-6 Warm Up Lesson Presentation Lesson Quiz
1.2 Slopes and Intercepts Objectives: Graph a linear equation. Write a linear equation for a given line in the coordinate plane. Standards: K Apply.
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Slope.
Warm Up 1. 4x + 2y = x + 2 = 6y Solve each equation for y. y = –2x Find the slope of the line that contains (5, 3) and (–1, 4). 4. Find the.
Writing and Graphing Linear Equations
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
ALGEBRA READINESS LESSON 8-5 Warm Up Lesson 8-5 Warm-Up.
Writing and Graphing Linear Equations Linear equations can be used to represent relationships.
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Lines in the Coordinate Plane
GRE: Graphical Representations
Graphing Linear Equations
Warm Up Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 1. m = 2, x = 3, and y = 0 Solve each equation for y.
Holt McDougal Algebra Slope-Intercept Form Warm Up Find each y-intercept. 1. y = 3x x – 3y = 12 Find each slope x + 2y = x.
Remember: Slope is also expressed as rise/run. Slope Intercept Form Use this form when you know the slope and the y- intercept (where the line crosses.
Pre-Algebra 11-3 Using Slopes and Intercepts Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2)
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt McDougal Geometry 3-6 Lines in the Coordinate Plane 3-6 Lines in the Coordinate Plane Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt McDougal Algebra Solving Equations with Variables on Both Sides Algebra 1 Review.
Chapter 2 Functions and Linear Equations. Functions vs. Relations A "relation" is just a relationship between sets of information. A “function” is a well-behaved.
Holt McDougal Algebra Graphing Linear Functions Toolbox 2.3 (a)
Holt Algebra Point-Slope Form Warm Up Find the slope of the line containing each pair of points. 1. (0, 2) and (3, 4) 2. (–2, 8) and (4, 2) 3. (3,
Ex 2: Graph the line with slope 5/2 that passes through (-1, -3)
Slope-Intercept Form 4-6 Warm Up Lesson Presentation Lesson Quiz
Writing Linear Functions
2.3 Graphing Linear Functions
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Slope-Intercept Form 4-6 Warm Up Lesson Presentation Lesson Quiz
Point-Slope Form 5-7 Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

Graphing Linear Functions 2-3 Graphing Linear Functions Holt Algebra 2 Warm Up Lesson Presentation Lesson Quiz

Warm Up Solve each equation for y. 1. 7x + 2y = 6 2. 3. If 3x = 4y + 12, find y when x = 0. 4. If a line passes through (–5, 0) and (0, 2), then it passes through all but which quadrant. y = –2x – 8 y = –3 IV

Objectives Determine whether a function is linear. Graph a linear function given two points, a table, an equation, or a point and a slope.

Vocabulary linear function slope y-intercept x-intercept slope-intercept form

Meteorologists begin tracking a hurricane's distance from land when it is 350 miles off the coast of Florida and moving steadily inland. The meteorologists are interested in the rate at which the hurricane is approaching land.

+1 –25 +1 –25 +1 –25 +1 –25 Time (h) 1 2 3 4 Distance from Land (mi) 350 325 300 275 250 This rate can be expressed as . Notice that the rate of change is constant. The hurricane moves 25 miles closer each hour.

Functions with a constant rate of change are called linear functions Functions with a constant rate of change are called linear functions. A linear function can be written in the form f(x) = mx + b, where x is the independent variable and m and b are constants. The graph of a linear function is a straight line made up of all points that satisfy y = f(x).

Example 1A: Recognizing Linear Functions Determine whether the data set could represent a linear function. +2 –1 +2 –1 +2 –1 x –2 2 4 f(x) 1 –1 The rate of change, , is constant . So the data set is linear.

Example 1B: Recognizing Linear Functions Determine whether the data set could represent a linear function. +1 +2 +1 +4 +1 +8 x 2 3 4 5 f(x) 8 16 The rate of change, , is not constant. 2 ≠ 4 ≠ 8. So the data set is not linear.

Check It Out! Example 1A Determine whether the data set could represent a linear function. +7 –9 +7 –9 +7 –9 x 4 11 18 25 f(x) –6 –15 –24 –33 The rate of change, , is constant . So the data set is linear.

Check It Out! Example 1B Determine whether the data set could represent a linear function. –2 –4 –2 –4 –2 –8 x 10 8 6 4 f(x) 7 5 1 –7 The rate of change, , is not constant. . So the data set is not linear.

The constant rate of change for a linear function is its slope The constant rate of change for a linear function is its slope. The slope of a linear function is the ratio , or . The slope of a line is the same between any two points on the line. You can graph lines by using the slope and a point.

Example 2A: Graphing Lines Using Slope and a Point Graph the line with slope that passes through (–1, –3). Plot the point (–1, –3). The slope indicates a rise of 5 and a run of 2. Move up 5 and right 2 to find another point. Then draw a line through the points.

Example 2B: Graphing Lines Using Slope and a Point Graph the line with slope that passes through (0, 2). Plot the point (0, 2). The negative slope can be viewed as You can move down 3 units and right 4 units, or move up 3 units and left 4 units.

Check It Out! Example 2 Graph the line with slope that passes through (3, 1). Plot the point (3, 1). The slope indicates a rise of 4 and a run of 3. Move up 4 and right 3 to find another point. Then draw a line through the points.

Recall from geometry that two points determine a line Recall from geometry that two points determine a line. Often the easiest points to find are the points where a line crosses the axes. The y-intercept is the y-coordinate of a point where the line crosses the x-axis. The x-intercept is the x-coordinate of a point where the line crosses the y-axis.

Example 3: Graphing Lines Using the Intercepts Find the intercepts of 4x – 2y = 16, and graph the line. Find the x-intercept: 4x – 2y = 16 4x – 2(0) = 16 Substitute 0 for y. 4x = 16 x-intercept y-intercept x = 4 The x-intercept is 4. Find the y-intercept: 4x – 2y = 16 4(0) – 2y = 16 Substitute 0 for x. –2y = 16 y = –8 The y-intercept is –8.

Find the intercepts of 6x – 2y = –24, and graph the line. Check It Out! Example 3 Find the intercepts of 6x – 2y = –24, and graph the line. Find the x-intercept: 6x – 2y = –24 6x – 2(0) = –24 Substitute 0 for y. 6x = –24 x-intercept y-intercept x = –4 The x-intercept is –4. Find the y-intercept: 6x – 2y = –24 6(0) – 2y = –24 Substitute 0 for x. –2y = –24 y = 12 The y-intercept is 12.

Linear functions can also be expressed as linear equations of the form y = mx + b. When a linear function is written in the form y = mx + b, the function is said to be in slope-intercept form because m is the slope of the graph and b is the y-intercept. Notice that slope-intercept form is the equation solved for y.

Example 4A: Graphing Functions in Slope-Intercept Form Write the function –4x + y = –1 in slope-intercept form. Then graph the function. Solve for y first. –4x + y = –1 +4x +4x Add 4x to both sides. y = 4x – 1 The line has y-intercept –1 and slope 4, which is . Plot the point (0, –1). Then move up 4 and right 1 to find other points.

Example 4A Continued You can also use a graphing calculator to graph. Choose the standard square window to make your graph look like it would on a regular grid. Press ZOOM, choose 6:ZStandard, press ZOOM again, and then choose 5:ZSquare.

Example 4B: Graphing Functions in Slope-Intercept Form Write the function in slope-intercept form. Then graph the function. Solve for y first. Multiply both sides by Distribute. The line has y-intercept 8 and slope . Plot the point (0, 8). Then move down 4 and right 3 to find other points.

Check It Out! Example 4A Write the function 2x – y = 9 in slope-intercept form. Then graph the function. Solve for y first. 2x – y = 9 –2x –2x Add –2x to both sides. –y = –2x + 9 y = 2x – 9 Multiply both sides by –1. The line has y-intercept –9 and slope 2, which is . Plot the point (0, –9). Then move up 2 and right 1 to find other points.

Check It Out! Example 4A Continued You can also use a graphing calculator to graph. Choose the standard square window to make your graph look like it would on a regular grid. Press ZOOM, choose 6:ZStandard, press ZOOM again, and then choose 5:ZSquare.

Check It Out! Example 4B Write the function 5x = 15y + 30 in slope-intercept form. Then graph the function. Solve for y first. 5x = 15y + 30 –30 –30 Subtract 30 from both sides. 5x – 30 = 15y Divide both sides by 15. The line has y-intercept –2 and slope . Plot the point (0, –2). Then move up 1 and right 3 to find other points.

An equation with only one variable can be represented by either a vertical or a horizontal line.

Vertical and Horizontal Lines Vertical Lines Horizontal Lines The line x = a is a vertical line at a. The line y = b is a vertical line at b.

The slope of a vertical line is undefined. The slope of a horizontal line is zero.

Example 5: Graphing Vertical and Horizontal Lines Determine if each line is vertical or horizontal. A. x = 2 This is a vertical line located at the x-value 2. (Note that it is not a function.) x = 2 y = –4 B. y = –4 This is a horizontal line located at the y-value –4.

Determine if each line is vertical or horizontal. Check It Out! Example 5 Determine if each line is vertical or horizontal. A. y = –5 This is a horizontal line located at the y-value –5. x = 0.5 y = –5 B. x = 0.5 This is a vertical line located at the x-value 0.5.

Example 6: Application A ski lift carries skiers from an altitude of 1800 feet to an altitude of 3000 feet over a horizontal distance of 2000 feet. Find the average slope of this part of the mountain. Graph the elevation against the distance. Step 2 Graph the line. Step 1 Find the slope. The y-intercept is the original altitude, 1800 ft. Use (0, 1800) and (2000, 3000) as two points on the line. Select a scale for each axis that will fit the data, and graph the function. The rise is 3000 – 1800, or 1200 ft. The run is 2000 ft. The slope is .

Check It Out! Example 6 A truck driver is at mile marker 624 on Interstate 10. After 3 hours, the driver reaches mile marker 432. Find his average speed. Graph his location on I-10 in terms of mile markers. Step 1 Find the average speed. Step 2 Graph the line. The y-intercept is the distance traveled at 0 hours, 0 ft. Use (0, 0) and (3, 192) as two points on the line. Select a scale for each axis that will fit the data, and graph the function. distance = rate  time 192 mi = rate  3 h The slope is 64 mi/h.

Lesson Quiz: Part 1 1. Determine whether the data could represent a linear function. x –1 2 5 8 f(x) –3 1 9 yes 2. For 3x – 4y = 24, find the intercepts, write in slope- intercept form, and graph. x-intercept: 8; y-intercept: –6; y = 0.75x – 6

Lesson Quiz: Part 2 3. Determine if the line y = -3 is vertical or horizontal. horizontal 4. The bottom edge of a roof is 62 ft above the ground. If the roof rises to 125 ft above ground over a horizontal distance of 7.5 yd, what is the slope of the roof? 2.8