Improvements To Solar Radiation Pressure Modeling For Jason-2 Nikita P. Zelensky 2,1, Frank G. Lemoine 1, Stavros Melachroinos 2,1, Despina Pavlis 2,1,

Slides:



Advertisements
Similar presentations
Page 1 ENVISAT Calibration Review, ESTEC 9-13 Sept 2002, DORIS & ORBIT, Berthyl Duesmann.
Advertisements

ILRS Workshop, 2008, A 33 Year Time History of the J2 Changes from SLR Minkang Cheng and Byron D. Tapley Center for Space Research.
Colorado Center for Astrodynamics Research The University of Colorado ASEN 5070 OD Accuracy Assessment OD Overlap Example Effects of eliminating parameters.
POD/Geoid splinter March 14, 2007 J.P. Berthias Ocean Topography Science Team Meeting - Hobart, Australia – March 2007.
Preliminary SWOT Orbit Design Study R. Steven Nerem, Ryan Woolley, George Born, James Choe Colorado Center for Astrodynamics Research, University of Colorado.
From TOPEX-POSEIDON to JASON Science Working Team Meeting GRACE Mission Status Arles, France November 18-21, 2003 Byron D. Tapley (Principal Investigator)
THE AUSTRALIAN NATIONAL UNIVERSITY Infrasound Technology Workshop, November 2007, Tokyo, Japan OPTIMUM ARRAY DESIGN FOR THE DETECTION OF DISTANT.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
Jake Griffiths & Jim Ray NOAA/National Geodetic Survey Acknowledgement: Kevin Choi SUBDAILY ALIAS AND DRACONITIC ERRORS IN THE IGS ORBITS Harmonics of.
POD/Geoid Splinter Summary OSTS Meeting, Hobart 2007.
1 Extreme Ultraviolet Polarimetry Utilizing Laser-Generated High- Order Harmonics N. Brimhall, M. Turner, N. Herrick, D. Allred, R. S. Turley, M. Ware,
MR P.Durkee 5/20/2015 MR3522Winter 1999 MR Remote Sensing of the Atmosphere and Ocean - Winter 1999 Active Microwave Radar.
2-3 November 2009NASA Sea Level Workshop1 The Terrestrial Reference Frame and its Impact on Sea Level Change Studies GPS VLBI John Ries Center for Space.
Spatial-Temporal Parametric Model with Covariance Structure based on Multiple Satellite Altimetry for Predicting and Interpolating Sea Surface Heights.
ASIC**3 Workshop -- May 2006 Measuring Global Sea Level Rise With Satellite Radar Altimetry ASIC**3 Workshop -- May 2006 Laury Miller NOAA/NESDIS Lab for.
Assessment of SLR observation performance using LAGEOS data Gang ZHAO, You ZHAO, Mingguo Sun, Huanhuan YU Changchun Observatory, NAOC, CAS, China 16 th.
ASIC3 WorkshopLandsdowne, VA May 16-18, 2006 J. Harder Page 1 Calibration Status of the Solar Irradiance Monitor (SIM) : The Present and the Future Jerald.
Sea Level Change Observation Status on the elements of the puzzle Christian Le Provost LEGOS / CNRS Toulouse, France.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Principles of Sea Level Measurement Long-term tide gauge records  What is a tide station?  How is sea level measured relative to the land?  What types.
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 37: SNC Example and Solution Characterization.
ESPACE Porto, June 2009 MODELLING OF EARTH’S RADIATION FOR GPS SATELLITE ORBITS Carlos Javier Rodriguez Solano Technische Universität München
Satellites and Sensors
Remote Sensing and Active Tectonics Barry Parsons and Richard Walker Michaelmas Term 2011 Lecture 4.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Active Microwave Radar.
E. C. Pavlis Geoscience Australia Seminar Canberra, Australia 29 August, 2005 Implications of SLR Network Variations On Geodetic and Geophysical Products.
Regional and Global Measurements: The Reference Frame for Understanding Observations Geoff Blewitt University of Nevada, Reno, USA Zuheir Altamimi IGN,
Sea Level Change Measurements: Estimates from Altimeters Understanding Sea Level Rise and Variability June 6-9, 2006 Paris, France R. S. Nerem, University.
SPACE GEODESY NETWORK & ITRF Z Minchul LEE 1.
Modeling Earth radiation pressure Carlos Rodriguez-Solano
IGS Workshop, June 02, Validation of GNSS Satellite Orbits C. Flohrer, G. Beutler, R. Dach, W. Gurtner, U. Hugentobler 1, S. Schaer, T. Springer.
Mapping Ocean Surface Topography With a Synthetic-Aperture Interferometry Radar: A Global Hydrosphere Mapper Lee-Lueng Fu Jet Propulsion Laboratory Pasadena,
Philip Moore Jiasong Wang School of Civil Engineering and Geosciences University of Newcastle upon Tyne Newcastle upon Tyne NE1 7RU
01/0000 HEO and Daylight Ranging “Reality and Wishes” Ramesh Govind ILRS Fall Workshop, 4 th October 2005.
SLR in the age of GPS Frank G. Lemoine, Scott B. Luthcke, Nikita P Zelensky Brian D. Beckley Code 697, Space Geodesy Laboratory NASA Goddard Space Flight.
BIOPHYS: A Physically-based Algorithm for Inferring Continuous Fields of Vegetative Biophysical and Structural Parameters Forrest Hall 1, Fred Huemmrich.
GEOSAT Follow-On (GFO) Radar Altimeter Satellite
Space Reflecto, November 4 th -5 th 2013, Plouzané Characterization of scattered celestial signals in SMOS observations over the Ocean J. Gourrion 1, J.
Geocenter Variations Derived from GRACE Data Z. Kang, B. Tapley, J. Chen, J. Ries, S. Bettadpur Joint International GSTM and SPP Symposium GFZ Potsdam,
DORIS Days May 2-3, 2000 DORIS role in the next years P. Escudier CNES.
GRACE Mascons and Hydrological Data for the Continents: GRACE ACCESS D. Rowlands (1), F. Lemoine (1), S. Luthcke (1), S. Klosko (2), D. Chinn (2), K. Akoumany.
Goddard Space Flight Center High Earth Orbit GPS Flight Experiment AMSAT-OSCAR 40 (AO-40) Frank H. Bauer NASA Goddard Space Flight Center November 1, 2001.
POD/Geoid splinter Wednesday March 14, 2007 Morning and Afternoon J.P. Berthias – J. Ries Ocean Topography Science Team Meeting - Hobart, Australia – March.
Hobart Australia March 2007Willy Bertiger Ocean Surface Topography Science Team Meeting GPS-Based Precise Orbit Determination: Jason-1 Status Willy Bertiger,
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
Multi-Mission Cross Calibration – results with upgraded altimeter data Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München
Satellite Oceanography Modified from a Presentation at STAO 2003 By Dr. Michael J. Passow.
Earth System Data Record of mass transport from time-variable gravity data Victor Zlotnicki 1, Matthieu Talpe 2, F. Lemoine 3, R. Steven Nerem 2, Felix.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Closing the Global Sea Level.
Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing Frank G. Lemoine Planetary Geodynamics Laboratory.
Improved Marine Gravity from CryoSat and Jason-1 David T. Sandwell, Emmanuel Garcia, and Walter H. F. Smith (April 25, 2012) gravity anomalies from satellite.
Global Ice Coverage Claire L. Parkinson NASA Goddard Space Flight Center Presentation to the Earth Ambassador program, meeting at NASA Goddard Space Flight.
Jason-1 POD reprocessing at CNES Current status and further developments L. Cerri, S. Houry, P. Perrachon, F. Mercier. J.P. Berthias with entries from.
Orbit Selection for the WATER HM Mission R. S. Nerem CCAR, CIRES, University of Colorado D. P. Chambers Center for Space Research, University of Texas.
1 July 20, 2000 Geosat Follow-On An examination from an operational point of view Impact on operational products Overall system performance (from sensor.
SCM x330 Ocean Discovery through Technology Area F GE.
Formosat-3/COSMIC WorkshopNov 28 - Dec 1, 2006Taipei, Taiwan Estimates of the precision of LEO orbit determination and GPS radio occultations from the.
Investigations on (radial) offsets between different Swarm orbit solutions 8 September th Swarm Data Quality Workshop, IPGP, Paris Heike Peter (PosiTim),
Precise Orbit Determination of the GOCE re-entry phase Francesco Gini, Michiel Otten, Tim Springer, Werner Enderle, Stijn Lemmens, and Tim Flohrer.
ESA Climate Change Initiative Sea-level-CCI project A.Cazenave (Science Leader), G.Larnicol /Y.Faugere(Project Leader), M.Ablain (EO) MARCDAT-III meeting.
Thomas Herring, IERS ACC, MIT
CNES/CLS AC (GRG), IDS CC
Validation Activities for Jason-1 and TOPEX/Poseidon Precise Orbits
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
CNES-CLS Dynamical modelling of GPS orbits
Presentation transcript:

Improvements To Solar Radiation Pressure Modeling For Jason-2 Nikita P. Zelensky 2,1, Frank G. Lemoine 1, Stavros Melachroinos 2,1, Despina Pavlis 2,1, Douglas S. Chinn 2,1, Oleg Bordyugov 2,1 (1) Planetary Geodynamics Laboratory, Code 698, NASA Goddard Space Flight Center; Greenbelt, MD, USA (2) SGT Inc.,Greenbelt, MD ABSTRACT Jason-2 (OSTM, Ocean Surface Topography Mission) is the follow-on to the Jason-1 and TOPEX/Poseidon radar altimetry missions observing the sea surface. The computed orbit is used to reference the altimeter measurement to the center of the Earth, and thus the accuracy and stability of the orbit are critical to the sea surface observation accuracy. A 1-cm Jason-2 radial orbit accuracy goal is required for meeting the 2.5 cm altimeter measurement goal. Also mean sea level change estimated from altimetry requires orbit stability to well below 1 mm/yr. Although 1-cm orbits have been achieved, unresolved large draconitic period error signatures remain and are believed to be due to mis-modeling of the solar radiation pressure (SRP) forces acting on the satellite. Such error may easily affect the altimeter data, and can alias into any number of estimated geodetic quantities. Precision orbit determination (POD) at GSFC and other analysis centers employs an 8-panel “macromodel” representation of the satellite geometry and optical properties to model SRP. Telemetered attitude and modeled solar array pitch angles (SAPA) are used to orient the macromodel. Several possible improvements to SRP modeling are evaluated and include: 1) using telemetered SAPA values, 2) using the SRP model developed at UCL for the very similar Jason-1, 3) re-tuning the macromodel, 4) modifying POD strategy to estimate a coefficient of reflectivity (C R ) for every arc, or else using the reduced-dynamic approach. Improvements to POD modeling are evaluated through analysis of tracking data residuals, estimated empirical accelerations, and orbit differences. AGU Fall 2011 Meeting San Francisco Satellite Orbits and Attitude: Attacking the Error Budgets ( G41B-0739) Contacts: Nikita Zelensky Frank Lemoine Radiation pressure acting on Jason-2 Forces due to radiation pressure include direct solar radiation, Earth Albedo and infra-red re-radiation (IR), and the effects of thermal radiation imbalance. Thermal radiation represents effects of heating/cooling of the satellite while in sunlight/shadow, and internal heat dissipation. Table 1 shows the relative magnitude of the effect from such forces on Jason-2. The difficulty in modeling such forces is due to the complex satellite geometry and incomplete knowledge of the reflective and thermal properties of the satellite surfaces. Various portions of the satellite are illuminated by the sun depending on the attitude regime (Table 2) and B’ angle (angle between orbit plane and sun vector – see below). The B’ or draconic period is 118 days for Jason-2. The models considered for this study are listed in Table 4. How is the current modeling deficient? SLR residuals from the least accurate modeling, g916 (Table 5 above), do not show any obvious patterns in the B’ x orbit angle plot below. However the SLR points when so displayed show some deficiency in coverage in very high/low B’ regions. Compared to the most accurate jpl11a orbits, the crossover residuals suggest the macromodel is most deficient in the high/low B’ regions. C R estimates suggest the model is under-reflecting light in these regions. Macromodel parameters selected for tuning should be most effective in these regions. Conclusions 1) Jason-2 Radiation force modeling has shown improvement using a tuned macromodel which includes an SA thermal component (t2_g_th), and by simply re-tuning the C R to ) Although the Jason-2 orbits meet or are close to the radial 1-cm goal set by altimeter analysis requirements, significant error remains at the 118- day draconic period. 3) The inability of the best models to further reduce the substantial orbit error suggests a deficiency in the macromodel sophistication, and not inadequate observability over certain regions, as PCE orbit data were included in the tuning. 4) Analysis will continue to improve Jason-2 radiation pressure modeling. Outstanding issues include: 1) use of telemetered solar array pointing angles (in progress) 2) self – shadowing 3) Jason-2 thermal emission Table 2. Jason-2 attitude regime Yaw modeB’ regiondescription sinusoidalB’ > |15 ° |Yaw = cos (orbit angle) scaled by B’ fixed lowB’ < |15 ° |Yaw =0° +B’ Yaw =180° -B’ fixed highB’ > |80 ° |Yaw =+90° +B’ Yaw =-90° -B’ ramp upB’ => |15 ° | increase Yaw fixed to sinusoidal transition (90 seconds) ramp downB’ =< |15 ° | decrease Yaw sinusoidal to fixed transition (90 seconds) flipB’ crosses 0°Yaw =0° +B’ (10 minutes) Yaw =180° -B’ (10 minutes) Table 1. radiation forces acting on Jason-2 acting force over cycle 1, in sinusoidal yaw, B’ : -35° to -45° total RMS acceleration (10 -9 m/s 2 ) macromodel pretuned (g_th) macromodel tuned (t2_g_th) Solar radiation pressure Albedo + IR Thermal imbalance SA Table 4. Jason2 satellite radiation pressure models considered macromodel: Jason1 8 plates oriented to approximate the geometry and the optical reflective properties (CNES 2008). Two representations are considered, one using the geometric surface area and a-priori values, and the other using the optical area (geometric area scaled by the sum of the specular+diffuse+absorbed reflectivity coefficients) and values tuned by CNES (CNES 2008). ucl : developed for Jason1 using a finite element approach and includes the effects of self-shadowing and solar array (SA) thermal imbalance (Ziebart 2004) thermal SA+ : solar array panel facing sun thermal imbalance developed for TOPEX/Poseidon (Marshall et al., 1992, Luthcke et al., 1992) C R : coefficient of reflectivity scale for total effect of radiation pressure model. Jason-2 radiation pressure orbit error Spectral analysis of radial differences between the jpl11a and g916 orbits sampled at fixed geographic locations show the most power at the draconic 118- day period, and indicate error due to radiation pressure. This error is thought to largely reside in the g916 orbits, as the jpl11a orbits are considered to be the most accurate. The 118-day amplitude projected geographically shows 9-12 mm signals in the North Atlantic and Pacific waters near Australia. Table 5. Orbit description and tests orbitdescriptionCRCR RMS residuals cycles DORIS (mm/s) SLR (cm) Xover (cm) g916std1007 standards (geometric area pre-tuned macromodel, SLR + DORIS dynamic, C R = 0.916) g945std1007, C R = g945_rdstd1007, C R = 0.945, reduced-dynamic g_crarcstd1007, estimate C R in orbit solution / arcest uclstd1007, Jason-1 UCL model g_thstd1007, TOPEX Solar Array +face thermal model ostd1007, optical area pre-tuned macromodel o_thas o, TOPEX Solar Array +face thermal model jpl11aJPL GPS RLSE11a orbit, considered the most accurate t1_gas g945, macromodel tuned using SLR+DORIS t1_g_thas g_th, macromodel tuned using SLR+DORIS t2_g_thas g_th,, macromodel tuned using SLR+DORIS, plus jpl11a orbit positions every minute (pce data) A series of 11 SLR/DORIS POD tests were performed and are compared to the jpl11a (Table 5). For these tests the macromodel was tuned with and without the SA+ thermal component (Table 6). This model was tuned including jpl11a PCE data (t2_g_th) which are highly precise orbit positions. In a separate POD test over 112 cycles the use of such data improves the crossover residuals from cm (SLR/DORIS) to cm (PCE). The tests show that compared to g916 (GSFC std1007) the t2_g_th macromodel performs best and just tuning the C R to is almost as good. The best POD improvement is for the reduced-dynamic (g945_rd). In addition to residual fits, the improvements are seen by a reduction in the estimated empirical acceleration amplitudes and better agreement with the jpl11a orbits. The remaining excursions in the empirical accelerations occur at ramp times, and are likely due to the inability of the external attitude, sampled at about 30 seconds, to account for the rapid 90-second transition. No improvement is seen for g_crarc as the SLR/DORIS C R estimate is highly correlated with the empirical parameters. Radiation pressure model test Results References CNES, website page 2008, Luthcke SB, and Marshall JA, Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination, NASA Technical Memorandum , November Marshall JA, Luthcke SB, Antreasian PG, Rosborough GW, Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination, NASA Technical Memorandum , June Ziebart M, Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape, J. Spacecraft Rockets 41 (5), , Zelensky NP, Lemoine FG, Ziebart M, et al., DORIS/SLR POD modeling improvements for Jason-1 and Jason-2, Advances in Space Research 46 (2010) Radiation pressure model tuning considerations absolute value SLR residuals (mm)number SLR points B’ by orbit angle 5°x5° gridded values cycles 1-84 Table 6. Acknowledgements: We acknowledge the NASA Physical Oceanography program and the MEaSURE's project for their support, as well as the International Laser Ranging Service (ILRS), the International DORIS Service (IDS), and the International GNSS Service for their continued support.