Chapter 6 Proteins: Secondary, Tertiary, and Quaternary Structure

Slides:



Advertisements
Similar presentations
Structure of Proteins 3D structure determined by amino acid sequence Structure - Function Native structure of a protein = functionally, folded conformation.
Advertisements

Higher Order Protein Structures Lecture 6, Medical Biochemistry.
PROTEINS Proteins are the most complex and most diverse group of biological compounds. If you weigh about 70 kg: About 50 of your 70 kg is water. Many.
Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Protein Tertiary Structure. What to Know What are some protein functions? General principles for protein folding General structural features of globular.
Protein Structure – Part-2 Pauling Rules The bond lengths and bond angles should be distorted as little as possible. No two atoms should approach one another.
The amino acids in their natural habitat. Topics: Hydrogen bonds Secondary Structure Alpha helix Beta strands & beta sheets Turns Loop Tertiary & Quarternary.
Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends.
Protein 3-Dimensional Structure and Function
S ASC Answer to Practice Problem
CHMI 2227E Biochemistry I Proteins: Secondary Structure
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 6 Proteins: Secondary, Tertiary, and Quaternary Structure to.
Lecture 3: Cellular building Blocks - Proteins.
Amino Acid and Protein1. 2  The formation of a peptide bond between glycine and alanine is shown in Figure 5.8. The product is called dipeptide, the.
Proteins Dr Una Fairbrother. Dipeptides u Two amino acids are combined as in the diagram, to form a dipeptide. u Water is the other product.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Proteins: Their Structure and Biological Functions.
Protein Basics Protein function Protein structure –Primary Amino acids Linkage Protein conformation framework –Dihedral angles –Ramachandran plots Sequence.
(Foundation Block) Dr. Ahmed Mujamammi Dr. Sumbul Fatma
Proteins: Levels of Protein Structure Conformation of Peptide Group
Proteins Dr. Sumbul Fatma Clinical Chemistry Unit
Diverse Macromolecules. V. proteins are macromolecules that are polymers formed from amino acids monomers A. proteins have great structural diversity.
7.5: PROTEINS Proteins Function Structure. Function 7.5.4: State four functions of proteins, giving a named example of each. [Obj. 1] Proteins are the.
Types of Proteins Proteomics - study of large sets of proteins, such as the entire complement of proteins produced by a cell E. coli has about 4000 different.
Lecture 10: Protein structure
Proteins: Secondary Structure Alpha Helix
Secondary Protein Structure. What to Know You will only be tested on what is discussed in class Pay particular attention to topics that are stressed or.
The most important secondary structural elements of proteins are: A. α-Helix B. Pleated-sheet structures C. β Turns The most common secondary structures.
Proteins. Proteins? What is its How does it How is its How does it How is it Where is it What are its.
Chapter 6 Proteins: Secondary, Tertiary, and Quaternary Structure
Molecules, Genes, and Diseases Sun 23/2/2014 Session 2 Protein Structure and Folding Dr. Mona A. Rasheed.
STRUCTURAL ORGANIZATION
Protein “folding” occurs due to the intrinsic chemical/physical properties of the 1° structure “Unstructured” “Disordered” “Denatured” “Unfolded” “Structured”
BD2ZdVSe2vQ&feature=related.
Protein Structure Stryer Short Course Chapter 4. Peptide bonds Amide bond Primary structure N- and C-terminus Condensation and hydrolysis.
Amino acids and proteins … for AS Biology. Amino acids Proteins are macromolecules consisting of long unbranched chains of amino acids. All amino acids.
BIOL 200 (Section 921) Lecture # 2, June 20, 2006 Reading for lecture 2: Essential Cell Biology (ECB) 2nd edition. Chap 2 pp 55-56, 58-64, 74-75; Chap.
CS790 – BioinformaticsProtein Structure and Function1 Review of fundamental concepts  Know how electron orbitals and subshells are filled Know why atoms.
Protein 3-Dimensional Structure and Function. Terminology Conformation – spatial arrangement of atoms in a protein Native conformation – conformation.
The α-helix forms within a continuous strech of the polypeptide chain 5.4 Å rise, 3.6 aa/turn  1.5 Å/aa N-term C-term prototypical  = -57  ψ = -47 
Protein Structure (Foundation Block) What are proteins? Four levels of structure (primary, secondary, tertiary, quaternary) Protein folding and stability.
Protein structure and function Part - I
Chap. 4. Problem 1. Part (a). Double and triple bonds are shorter and stronger than single bonds. Because the length of a peptide bond more closely resembles.
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
Protein Structure (Foundation Block) What are proteins? Four levels of structure (primary, secondary, tertiary, quaternary) Protein folding and stability.
Proteins Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology Tel
1 Chapter Outline 13.1 Amino Acid Structures - General structure of the aa; Groups bonded to the alpha carbon; structure of aa in water; zwitterion - Classification.
3-D Structure of Proteins
Proteins Polypeptide chains in specific conformations Protein Graphic Design video.
Sections 14.9, 14.10, 14.11, and Hannah Nowell and Jenny Sulouff.
Protein backbone Biochemical view:
Levels of Protein Structure. Why is the structure of proteins (and the other organic nutrients) important to learn?
PROTEINS Characteristics of Proteins Contain carbon, hydrogen, oxygen, nitrogen, and sulfur Serve as structural components of animals Serve as control.
Levels of Protein Structure. Why is the structure of proteins (and the other organic nutrients) important to learn?
Tymoczko • Berg • Stryer © 2015 W. H. Freeman and Company
Enzymes SADIA SAYED. Enzymes are proteins  All enzymes are proteins  Strings of amino acids folding up into distinct structures  The properties of.
Polypeptide Chains Can Change Direction by Making Reverse Turns and Loops.
Peptides. Structure and functions of proteins Department of General Chemistry Poznań University of Medical Sciences MD 2015/16.
Structural organization of proteins
Protein Structure BL
Chemical agents PROTEINS: The Molecular Tools of the Cell
Protein Structure.
Proteins.
The Peptide Bond Amino acids are joined together in a condensation reaction that forms an amide known as a peptide bond.
The Peptide Bond Amino acids are joined together in a condensation reaction that forms an amide known as a peptide bond.
Diverse Macromolecules
Biochem Block Handout #6: Protein Structure
Proteins.
Fig 3.13 Reproduced from: Biochemistry by T.A. Brown, ISBN: © Scion Publishing Ltd, 2017.
Structure of Proteins Chymotrypin Glycine
The Three-Dimensional Structure of Proteins
Presentation transcript:

Chapter 6 Proteins: Secondary, Tertiary, and Quaternary Structure

Essential Question How do the forces of chemical bonding determine the formation, stability, and myriad functions of proteins?

Outline What noncovalent interactions stabilize protein structure? What role does the amino acid sequence play in protein structure? What are the elements of secondary structure in proteins, and how are they formed? How do polypeptides fold into three-dimensional protein structures? How do protein subunits interact at the quaternary level of protein structure?

Protein Structure and Function Are Tightly Linked The three-dimensional structures of proteins and their biological functions are linked by several overarching principles: Function depends on structure Structure depends on sequence and on weak, noncovalent forces The number of protein folding patterns is large but finite Structures of globular proteins are marginally stable Marginal stability facilitates motion Motion enables function

6.1 What Noncovalent Interactions Stabilize the Higher Levels of Protein Structure? Secondary, tertiary, and quaternary structure of proteins is formed and stabilized by weak forces Hydrogen bonds are formed wherever possible Hydrophobic interactions drive protein folding Ionic interactions usually occur on the protein surface van der Waals interactions are ubiquitous

Electrostatic Interactions in Proteins An electrostatic interaction between a positively charged lysine amino group and a negatively charged glutamate carboxyl group.

The atoms of the peptide bond lie in a plane 6.3 What Are the Elements of Secondary Structure in Proteins, and How Are They Formed? The atoms of the peptide bond lie in a plane All protein structure is based on the amide plane The resonance stabilization energy of the planar structure is 88 kJ/mol A twist about the C-N bond involves a twist energy of 88 kJ/mol times the square of the twist angle. Rotation can occur about either of the bonds linking the alpha carbon to the other atoms of the peptide backbone

6.3 What Are the Elements of Secondary Structure in Proteins, and How Are They Formed? The amide or peptide bond planes are joined by the tetrahedral bonds of the α-carbon. The rotation parameters are φ and ψ. The conformations shown corresponds to φ= 180° and ψ= 180°.

Consequences of the Amide Plane Two degrees of freedom per residue for the peptide chain Angle about the Cα-N bond is denoted φ (phi) Angle about the Cα-C bond is denoted ψ (psi) The entire path of the peptide backbone is known if all φ and ψ angles are specified Some values of φ and ψ are more likely than others.

Some Values of φ and ψ Are Not Allowed Many of the possible conformations about an α-carbon between two peptide planes are forbidden because of steric crowding.

Steric Constraints on φ & ψ Unfavorable orbital overlap/steric crowding precludes some combinations of φ and ψ φ = 0°, ψ = 180° is unfavorable φ = 180°, ψ = 0° is unfavorable φ = 0°, ψ = 0° is unfavorable

Steric Constraints on φ & ψ

Classes of Secondary Structure Secondary structures are local structures that are stabilized by hydrogen bonds Alpha helices Other helices Beta sheet (composed of "beta strands") Tight turns (aka beta turns or beta bends) Beta bulge

The α-Helix Four different representations of the α-helix.

The α-Helix Numbers to Know Residues per turn: 3.6 Rise per residue: 1.5 Angstroms (0.15 nm) Rise per turn (pitch): 3.6  1.5Å = 5.4 Angstroms The backbone loop that is closed by any H-bond in an alpha helix contains 13 atoms φ = −60 degrees, ψ = −45 degrees The non-integral number of residues per turn was a surprise to crystallographers

The α-Helix in Proteins Two proteins that contain substantial amounts of α-helix.

Amino acids can be classified as helix-formers or helix breakers

The β-Pleated Sheet The β-pleated sheet is composed of β-strands Also first postulated by Pauling and Corey, 1951 Strands in a β-sheet may be parallel or antiparallel Rise per residue: 3.47 Angstroms for antiparallel strands 3.25 Angstroms for parallel strands Each strand of a β-sheet may be pictured as a helix with two residues per turn

The β-Pleated Sheet A “pleated sheet” of paper with an antiparallel β-sheet drawn on it.

The β-Pleated Sheet H bonds in parallel and antiparallel β-sheets

Helix-Sheet Composites in Spider Silk Spider web silks are composites of α-helices and β-sheets. The radial strands of webs must be strong and rigid and have a higher percentage of β-sheets. The circumferential strands (termed capture silk) must be flexible and contain a higher percentage of α-helices.

(aka β-bend, or tight turn) The β-Turn (aka β-bend, or tight turn) Allows the peptide chain to reverse direction Carbonyl C of one residue is H-bonded to the amide proton of a residue three residues away Proline and glycine are prevalent in β-turns There are two principal forms of β-turns

The β-Turn The structures of two kinds of β-turns (also called tight turns or β-bends). Four residues are required to form a β-turn. Left: Type I; right: Type II.

6.4 How Do Polypeptides Fold into Three-Dimensional Protein Structures? Several important principles: Secondary structures form wherever possible (due to formation of large numbers of H bonds) Helices and sheets often pack close together Peptide segments between secondary structures tend to be short and direct Proteins fold so as to form the most stable structures. Stability arises from: Formation of large numbers of intramolecular hydrogen bonds Reduction in the surface area accessible to solvent that occurs upon folding

Two factors lie at the heart of these principles: 6.4 How Do Polypeptides Fold into Three-Dimensional Protein Structures? Two factors lie at the heart of these principles: Proteins are typically a mixture of hydrophilic and hydrophobic amino acids The hydrophobic groups tend to cluster together in the folded interior of the protein

Fibrous Proteins Much or most of the polypeptide chain is organized approximately parallel to a single axis Fibrous proteins are often mechanically strong Fibrous proteins are usually insoluble Usually play a structural role in nature Three types of fibrous protein are discussed here: α-Keratin β-Keratin Collagen

α-Keratin A fibrous protein found in hair, fingernails, claws, horns and beaks Sequence consists of 311-314 residue alpha helical rod segments capped with non-helical N- and C-termini Primary structure of helical rods consists of 7-residue repeats: (a-b-c-d-e-f-g)n, where a and d are nonpolar. This structure promotes association of helices to form coiled coils

Collagen – A Triple Helix Principal component of connective tissue (tendons, cartilage, bones, teeth) Basic unit is tropocollagen: Three intertwined polypeptide chains (1000 residues each) MW = 285,000 300 nm long, 1.4 nm diameter Unique amino acid composition, including hydroxylysine and hydroxyproline Hydroxyproline is formed by the vitamin C-dependent prolyl hydroxylase reaction.

Collagen – A Triple Helix The secrets of its a.a. composition... Nearly one residue out of three is Gly Proline content is unusually high Unusual amino acids found: 4-hydroxyproline 3-hydroxyproline 5-hydroxylysine Pro and HyPro together make 30% of residues

Globular Proteins Mediate Cellular Function Globular proteins are more numerous than fibrous proteins The diversity of protein structures in nature reflects the remarkable variety of functions they perform Functional diversity derives in turn from: The large number of folded structures that polypeptides can adopt The varied chemistry of the side chains of the 20 common amino acids

Some design principles Globular Proteins Some design principles Helices and sheets make up the core of most globular proteins Most polar residues face the outside of the protein and interact with solvent Most hydrophobic residues face the interior of the protein and interact with each other Packing of residues is close However, ratio of van der Waals volume to total volume is only 0.72 to 0.77, so empty space exists The empty space is in the form of small cavities

“Random coils” are not random The segments of a protein that are not helices or sheets are traditionally referred to as “random coil”, although this term is misleading: Most of these segments are neither coiled or random They are usually organized and stable, but don’t conform to any frequently recurring pattern Random coil segments are strongly influenced by side-chain interactions with the rest of the protein

Globular Proteins The structure of ribonuclease, showing elements of helix, sheet and random coil.

Protein surfaces are complex The surfaces of proteins are complementary to the molecules they bind.

Waters on the Protein Surface Stabilize the Structure The surfaces of proteins are ideally suited to form multiple H bonds with water molecules.

α-Helices May be Polar, Nonpolar or Amphiphilic The so-called helical wheel presentation can reveal the polar or nonpolar character of α-helices.

Protein domains are nature’s modular strategy for protein design Proteins composed of about 250 amino acids or less often have a simple, compact globular shape Larger globular proteins are typically made up of two or more recognizable and distinct structures, termed domains or modules – compact, folded protein structures that are usually stable by themselves in aqueous solution Domains may consist of a single continuous portion of the protein sequence (see Figure 6.23) In some proteins, the domain sequence is interrupted by a sequence belonging to another part of the protein (Figure 6.24)

Many proteins are composed of several distinct domains Several protein modules used in the construction of complex multimodule proteins.

Classification Schemes for the Protein Universe Are Based on Domains Common features of SCOP and CATH: Class is determined from overall composition of secondary structure elements in a domain Fold describes the number, arrangement, and connections of these secondary structure elements Superfamily includes domains of similar folds and usually similar functions Family usually includes domains with closely related amino acid sequences

Structure and Function are Not Always Linked Because structure depends on sequence, and because function depends on structure, it is tempting to imagine that all proteins of similar structure should share a common function, but this is not always true Some proteins of similar domain structure have different functions Some proteins of similar function possess very different structures

Structure and Function are Not Always Linked

Denaturation Leads to Loss of Protein Structure and Function The cellular environment is suited to maintaining the weak forces that preserve protein structure and function External stresses – heat, chemical treatment, etc. – can disrupt these forces in a process termed denaturation – the loss of structure and function The cooking of an egg is an everyday example Ovalbumin, the principal protein in egg white, remains in its native structure up to a characteristic melting temperature, Tm Above this temperature, the structure unfolds and function is lost

Denaturation Leads to Loss of Protein Structure and Function The proteins of egg white are denatured during cooking. More than half of the protein in egg white is ovalbumin.

Denaturation Leads to Loss of Protein Structure and Function Proteins can be denatured by heat, with commensurate loss of function.

Denaturation Leads to Loss of Protein Structure and Function Proteins can be denatured (unfolded) by high concentrations of guanidine-HCl or urea. The denaturation of chymotrypsin is plotted here.

Anfinsen’s Classic Experiment Proved that Sequence Determines Structure Ribonuclease can be unfolded by treatment with urea. β-Mercaptoethanol (MCE) cleaves disulfide bonds. Anfinsen showed that ribonuclease structure (and function) could be restored under appropriate conditions.

Is There a Single Mechanism for Protein Folding? How a protein achieves its stable, folded state is a complex question Levinthal’s paradox demonstrates that proteins cannot fold by sampling all possible conformations This implies that proteins actually fold via specific “folding pathways” What factors play a role in protein folding processes?

Postulated Themes of Protein Folding Secondary structures – helices, sheets, and turns – probably form first Nonpolar residues may aggregate or coalesce in a process termed a hydrophobic collapse Subsequent steps probably involve formation of long-range interactions between secondary structures or involving other hydrophobic interactions The folding process may involve one or more intermediate states, including transition states and what have become known as molten globules

The Protein Folding Energy Landscape Ken Dill has suggested that the folding process can be pictured as a funnel of free energies. The rim at the top represents the many unfolded states. Polypeptides ‘fall down the wall of the funnel’ to ever fewer possibilities and lower energies as they fold.

Motion is Important for Globular Proteins Protein are dynamic structures – they oscillate and fluctuate continuously about their average or equilibrium structures This flexibility is essential for protein functions, including: Ligand binding Enzyme catalysis Enzyme regulation

Motion is Important for Globular Proteins Proteins are dynamic structures. The marginal stability of a tertiary structure leads to flexibility and motion in the protein.

Most Globular Proteins Belong to One of Four Structural Classes Proteins can be classified according to the type and arrangement of secondary structure There are four classes: All α proteins, in which α helices predominate All β proteins, in which β sheets predominate α/β proteins, in which helices and sheets are intermingled α+β proteins, which contain separate α-helical and β-sheet domains

Most Globular Proteins Belong to One of Four Structural Classes Four major classes of protein structure (as defined in the SCOP database).

Molecular Chaperones Are Proteins That Help Other Proteins to Fold Why are chaperones needed if the information for folding is inherent in the sequence? to protect nascent proteins from the concentrated protein matrix in the cell and perhaps to accelerate slow steps Chaperone proteins were first identified as "heat-shock proteins" (Hsp60 and Hsp70)

Some Proteins Are Intrinsically Unstructured Many proteins exist and function normally in a partially unfolded state These intrinsically unstructured proteins (IUPs) do not possess uniform structural properties but are still essential for cellular function These proteins are characterized by a nearly complete lack of structure and high flexibility IUPs adopt well-defined structures in complexes with their target proteins IUPs are characterized by an abundance of polar residues and a lack of hydrophobic residues

Some Proteins Are Intrinsically Unstructured Intrinsically unstructured proteins (IUPs) contact their target proteins over a large surface area.

α1-Antitrypsin – A Tale of Molecular Mousetraps and a Folding Disease α1-Antitrypsin normally blocks elastase in the lungs It functions as a molecular mousetrap, binding elastase, then dragging the bound elastase to the other side of the antitrypsin At this new site, elastase is inactivated and degraded Defects in α1-antitrypsin can result in lung and liver damage Genetic variants are often inactive In smokers, oxidation of a crucial Met in the flexible loop also inactivates α1-antitrypsin, leading to emphysema

α1-Antitrypsin – A Tale of Molecular Mousetraps and a Folding Disease Elastase is inactivated by binding to α1-antitrypsin

Diseases of Protein Folding A number of human diseases are linked to abnormalities of protein folding Protein misfolding may cause disease by a variety of mechanisms Misfolding may result is loss of function and the onset of disease The table on the next slide summarizes some known protein folding disease

Diseases of Protein Folding

What are the forces driving quaternary association? 6.5 How Do Protein Subunits Interact at the Quaternary Level of Structure? What are the forces driving quaternary association? Typical Kd for two subunits: 10−8 to 10−16M! These values correspond to energies of 50-100 kJ/mol at 37° C Entropy loss due to association - unfavorable Entropy gain due to burying of hydrophobic groups - very favorable!

6.5 How Do Protein Subunits Interact at the Quaternary Level of Structure? The quaternary structure of liver alcohol dehydrogenase.

6.5 How Do Protein Subunits Interact at the Quaternary Level of Structure? The subunit compositions of several proteins. Proteins with two or four subunits predominate in nature, and many cases of higher numbers exist.

6.5 How Do Protein Subunits Interact at the Quaternary Level of Structure? Figure 6.44 Multimeric proteins are symmetric arrangements of asymmetric objects. A variety of symmetries is displayed in these multimeric structures.

Questions You should be able to complete questions 1-4, 6-13 at the end of the chapter.