Complexity of manipulating elections with few candidates Vincent Conitzer and Tuomas Sandholm Carnegie Mellon University Computer Science Department.

Slides:



Advertisements
Similar presentations
How to Rig Elections and Competitions Noam Hazon*, Paul E. Dunne +, Sarit Kraus*, Michael Wooldridge + + Dept. of Computer Science University of Liverpool.
Advertisements

The Computational Difficulty of Manipulating an Election Tetiana Zinchenko 05/12/
Common Voting Rules as Maximum Likelihood Estimators Vincent Conitzer (Joint work with Tuomas Sandholm) Early version of this work appeared in UAI-05.
Voting and social choice Vincent Conitzer
How Hard Is It To Manipulate Voting? Edith Elkind, U. of Warwick Helger Lipmaa, Tartu U.
Algorithmic Game Theory Uri Feige Robi Krauthgamer Moni Naor Lecture 9: Social Choice Lecturer: Moni Naor.
Voting and social choice Looking at a problem from the designers point of view.
How “impossible” is it to design a Voting rule? Angelina Vidali University of Athens.
IMPOSSIBILITY AND MANIPULABILITY Section 9.3 and Chapter 10.
CS 886: Electronic Market Design Social Choice (Preference Aggregation) September 20.
Computing Kemeny and Slater Rankings Vincent Conitzer (Joint work with Andrew Davenport and Jayant Kalagnanam at IBM Research.)
Manipulation Toby Walsh NICTA and UNSW. Manipulation Constructive  Can we change result so a given candidate wins Destructive  Can we change result.
The Complexity of Elections: A New Domain for Heuristic Computation Piotr Faliszewski AGH University of Science and Technology, Kraków, Poland
+ Random Tie Breaking Toby Walsh NICTA and UNSW. + Random Tie Breaking Haris Aziz, Serge Gaspers, Nick Mattei, Nina Narodytska, Toby Walsh NICTA and UNSW.
Using computational hardness as a barrier against manipulation Vincent Conitzer
Using computational hardness as a barrier against manipulation Vincent Conitzer
Where are the hard manipulation problems? Toby Walsh NICTA and UNSW Sydney Australia LogICCC Day, COMSOC 2010.
The Distortion of Cardinal Preferences in Voting Ariel D. Procaccia and Jeffrey S. Rosenschein.
Complexity Results about Nash Equilibria
Speaker: Ariel Procaccia Joint work with: Michael Zuckerman, Jeff Rosenschein Hebrew University of Jerusalem.
Ties Matter: Complexity of Voting Manipulation Revisited based on joint work with Svetlana Obraztsova (NTU/PDMI) and Noam Hazon (CMU) Edith Elkind (Nanyang.
Preference elicitation Vincent Conitzer
CPS Voting and social choice
Social choice theory = preference aggregation = voting assuming agents tell the truth about their preferences Tuomas Sandholm Professor Computer Science.
An Algorithm for Automatically Designing Deterministic Mechanisms without Payments Vincent Conitzer and Tuomas Sandholm Computer Science Department Carnegie.
How Hard Is It To Manipulate Voting? Edith Elkind, Princeton Helger Lipmaa, HUT.
Computational Criticisms of the Revelation Principle Vincent Conitzer, Tuomas Sandholm AMEC V.
AWESOME: A General Multiagent Learning Algorithm that Converges in Self- Play and Learns a Best Response Against Stationary Opponents Vincent Conitzer.
Junta Distributions and the Average Case Complexity of Manipulating Elections A. D. Procaccia & J. S. Rosenschein.
Common Voting Rules as Maximum Likelihood Estimators Vincent Conitzer and Tuomas Sandholm Carnegie Mellon University, Computer Science Department.
Complexity of unweighted coalitional manipulation under some common voting rules Lirong XiaVincent Conitzer COMSOC08, Sep. 3-5, 2008 TexPoint fonts used.
Complexity of Mechanism Design Vincent Conitzer and Tuomas Sandholm Carnegie Mellon University Computer Science Department.
Automated Mechanism Design: Complexity Results Stemming From the Single-Agent Setting Vincent Conitzer and Tuomas Sandholm Computer Science Department.
Social choice theory = preference aggregation = truthful voting Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
Strategic Behavior in Multi-Winner Elections A follow-up on previous work by Ariel Procaccia, Aviv Zohar and Jeffrey S. Rosenschein Reshef Meir The School.
New Results on Computing in Games Tuomas Sandholm Carnegie Mellon University Computer Science Department Joint work with Vincent Conitzer.
Introduction complexity has been suggested as a means of precluding strategic behavior. Previous studies have shown that some voting protocols are hard.
Social choice (voting) Vincent Conitzer > > > >
CPS Social Choice & Mechanism Design Vincent Conitzer
CPS 173 Mechanism design Vincent Conitzer
CPS Voting and social choice Vincent Conitzer
Projektseminar Computational Social Choice -Eine Einführung- Jörg Rothe & Lena Schend SS 2012, HHU Düsseldorf 4. April 2012.
The Cost and Windfall of Manipulability Abraham Othman and Tuomas Sandholm Carnegie Mellon University Computer Science Department.
Automated Design of Multistage Mechanisms Tuomas Sandholm (Carnegie Mellon) Vincent Conitzer (Carnegie Mellon) Craig Boutilier (Toronto)
Mechanism design for computationally limited agents (previous slide deck discussed the case where valuation determination was complex) Tuomas Sandholm.
Game-theoretic analysis tools Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
Complexity of Determining Nonemptiness of the Core Vincent Conitzer, Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Junta Distributions and the Average-Case Complexity of Manipulating Elections A presentation by Jeremy Clark Ariel D. Procaccia Jeffrey S. Rosenschein.
Automated Mechanism Design Tuomas Sandholm Presented by Dimitri Mostinski November 17, 2004.
Great Theoretical Ideas in Computer Science.
Mechanism design (strategic “voting”) Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
Avoiding manipulation in elections through computational complexity Vincent Conitzer Computer Science Department Carnegie Mellon University Guest lecture.
Social choice theory = preference aggregation = voting assuming agents tell the truth about their preferences Tuomas Sandholm Professor Computer Science.
Definition and Complexity of Some Basic Metareasoning Problems Vincent Conitzer and Tuomas Sandholm Computer Science Department Carnegie Mellon University.
11/24/2008CS Common Voting Rules as Maximum Likelihood Estimators - Matthew Kay 1 Common Voting Rules as Maximum Likelihood Estimators Vincent Conitzer,
Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains Vincent Conitzer, Tuomas Sandholm Computer.
When Are Elections with Few Candidates Hard to Manipulate V. Conitzer, T. Sandholm, and J. Lang Subhash Arja CS 286r October 29, 2008.
Mechanism design for computationally limited agents (previous slide deck discussed the case where valuation determination was complex) Tuomas Sandholm.
Mechanism design for computationally limited agents (last lecture discussed the case where valuation determination was complex) Tuomas Sandholm Computer.
Social choice theory = preference aggregation = voting assuming agents tell the truth about their preferences Tuomas Sandholm Professor Computer Science.
Applied Mechanism Design For Social Good
A Crash Course on Computational Social Choice and Fair Division
Computational Social Choice and Moral Artificial Intelligence
Voting systems Chi-Kwong Li.
Voting and social choice
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
CPS 173 Voting and social choice
Approximability of Manipulating Elections
CPS Voting and social choice
Presentation transcript:

Complexity of manipulating elections with few candidates Vincent Conitzer and Tuomas Sandholm Carnegie Mellon University Computer Science Department

Outline Introduction –Voting –Manipulation –Computational complexity as a barrier to manipulation Problem specification & assumptions Deterministic voting protocols Randomized voting protocols Uncertainty about others’ votes Conclusion

Voting In multiagent systems, agents may have conflicting preferences A preference aggregator often must choose one candidate from the possible outcomes –Deciding on a leader/coordinator/representative –Joint plans –Allocations of tasks/resources –… Voting is the most general preference aggregation method –Applicable to any preference aggregation setting –No side payments

Voting “A > B > C” “A > C > B” “B > A > C” Voting protocol chooses winner (probably A here) Voter 1 Voter 2 Voter 3

Manipulation in voting A voter is said to manipulate when it does not rank the candidates truthfully Example: –Voter prefers Nader to Gore to Bush –But Nader is extremely unlikely to win –So, voter ranks Gore first instead of Nader Why is manipulation bad? –Protocol is designed to maximize social welfare  Manipulation will cause a suboptimal outcome to be chosen –If the protocol actually relies on manipulation to choose the right outcome, there exists another nonmanipulable protocol that chooses this same outcome (Revelation Principle)

Manipulation in voting “Gore” “Bush”“Gore” “Bush” Nader > Gore > Bush Voting truthfully (for Nader) might let Bush win, certainly will not get Nader to win So, better to rank Gore first

Different protocols Plurality voting (only top candidate matters) is not the only option Example: Single Transferable Vote (STV) –Each round, candidate with fewest (first) votes drops out –When your candidate drops out, your vote transfers to your next most preferred (remaining) candidate –Now our voter can safely vote for Nader, then let the vote transfer to Gore STV is also manipulable –Sometimes supporting a candidate hurts that candidate! Other protocols: –Borda (m points for the top candidate, m-1 for the second, …) –Copeland (maximum number of pairwise victories) –Maximin (maximum score in worst pairwise) –… Seminal result (Gibbard-Satterthwaite): all nondictatorial voting protocols with >2 candidates are manipulable!

Software agents may manipulate more Human voters may not manipulate because: –Do not consider the option of manipulation –Insufficient understanding of the manipulability of the protocol –Manipulation algorithms may be too tedious to run by hand For software agents, voting algorithms must be coded explicitly –Rational strategic algorithms are preferred –The voting algorithm needs to be coded only once –Software agents are good at running algorithms Key idea: use computational complexity as a barrier to manipulation!

Overview Introduction Problem specification –Prior research –Small numbers of candidates –Coalitions and weights Deterministic voting protocols Randomized voting protocols Uncertainty about others’ votes Conclusion

Prior research Individually manipulating Second-order Copeland is NP-complete [Bartholdi, Tovey, Trick 1989] Individually manipulating STV is NP-complete [Bartholdi, Orlin 1991] Those results rely on the number of candidates (m) being unbounded We designed a recursive algorithm for individually manipulating STV with O(m^1.62) calls (and usually much fewer) [Extended version] –Not too complex for realistic numbers of candidates

Manipulation complexity with few candidates Ideally, would like complexity results for constant number of candidates But then manipulator can simply evaluate each possible vote –assuming the others’ votes are known Even for coalitions, only polynomially many effectively different votes However, if we place weights on votes, complexity may return… Unweighted voters Weighted voters Individual manipulation Coalitional manipulation Can be hard easy Constant #candidates Unbounded #candidates Can be hard Can be hard Can be hard Potentially hard Unweighted voters Weighted voters

Why study weighted coalitional manipulation? In large elections, usually impossible to manipulate individually Many real world elections have weights –E.g. electoral college –Weights more likely with heterogeneous software agents Weighted coalitional manipulation is more realistic than assuming unbounded #candidates We also derive other individual/unweighted results from results in this setting

Overview Introduction Problem specification & assumptions Deterministic voting protocols –Constructive manipulation –Destructive manipulation Randomized voting protocols Uncertainty about others’ votes Conclusion

Constructive manipulation A coalition wants a certain candidate p to win Thrm.NP-complete for Borda, STV, Copeland, Maximin –For 3, 3, 4, 4 candidates respectively Proof sketch for Borda: –p is trailing the two other candidates, who are tied –Naturally, colluders give p their first vote –But must carefully divide their second votes across other candidates –This is basically doing PARTITION

Destructive manipulation A coalition wants a certain candidate h to not win Thrm. Easy for Borda, Copeland, Maximin, even with unbounded numbers of candidates –The algorithm relies on these methods being score-based and monotonic (more support always helps) Thrm. NP-complete for STV (even with 4 candidates) –Proof reduces constructive STV to destructive STV Sometimes, to get a candidate to not win, the coalition needs to get a specific other candidate to the final round

Overview Introduction Problem specification & assumptions Deterministic voting protocols Randomized voting protocols Uncertainty about others’ votes Conclusion

Randomization can be used to make manipulation hard Consider the Cup protocol: –Candidates play an elimination tournament based on pairwise elections Given the schedule (leaf labels), any type of manipulation is easy even with unbounded #candidates –For each node in tree, can build the set of candidates that would reach this node for some vote by the coalition (from bottom up) Manipulating a subtree only requires commitment on the order of candidates in that subtree Idea: randomize (uniformly) over schedules after votes received Theorem. Manipulating Randomized Cup is NP-complete –Proof is complex & uses 7 candidates a b b c b d c

Overview Introduction Problem specification & assumptions Deterministic voting protocols Randomized voting protocols Uncertainty about others’ votes –Dropping the coalitional assumption –Dropping the weights assumption Conclusion

Uncertainty about others’ votes Even individual weighted manipulation can be hard So far we assumed that manipulator(s) know the others’ votes –Unrealistic -> drop this assumption Theorem. Whenever constructive coalitional manipulation is hard under certainty, individual manipulation is hard under uncertainty –Holds even when manipulator’s vote is worthless i.e. we just wish to evaluate an election –Even with very limited kinds of uncertainty Independence All votes either completely known or not at all –Proof sketch. When manipulator’s vote is worthless, it is difficult to figure out if a certain candidate has a chance of winning, because this requires a constructive vote by the unknown voters

Uncertainty about others’ votes Even individual unweighted manipulation can be hard Let’s drop the assumption of independence between voters –Usually votes are highly correlated –Identical software agents will vote identically Theorem. Whenever evaluating an election is hard with independent weighted voters, it is hard with correlated unweighted voters –Even with very limited kinds of correlation Perfect correlation or independence –Proof sketch. Just replace a vote of weight k by k unweighted, perfectly correlated voters So, –because evaluation with independent weighted voters is hard for Borda, Copeland, Maximin and STV, –evaluation is hard for those protocols even for (correlated) unweighted voters

Overview Introduction Problem specification & assumptions Deterministic voting protocols Randomized voting protocols Uncertainty about others’ votes Conclusion

What do our results suggest? All of the protocols we discussed are computationally more manipulation-proof than Plurality Among these, STV seems inherently least manipulable Randomizing the protocol can make manipulation hard Manipulation is computationally difficult because usually there is uncertainty about others’ votes

Critique NP-hardness is a worst-case measure –It may not prevent all (or even most) instances from being manipulable Future research –Average-case complexity –Cryptographic manipulation-proofness