The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv:0804.0004.

Slides:



Advertisements
Similar presentations
Building a Mock Universe Cosmological nbody dark matter simulations + Galaxy surveys (SDSS, UKIDSS, 2dF) Access to mock catalogues through VO Provide analysis.
Advertisements

Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
GALAXIES IN DIFFERENT ENVIRONMENTS: VOIDS TO CLUSTERS:  Simulations will require to model full physics:  Cooling, heating, star formation feedbacks…
Where will supersymmetric dark matter first be seen? Liang Gao National observatories of China, CAS.
Why Environment Matters more massive halos. However, it is usually assumed in, for example, semianalytic modelling that the merger history of a dark matter.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
An Analytic Model for the Tidal Effect on Cosmic Voids Jounghun Lee & Daeseong Park Seoul National University Lee & Park 2006, ApJ, 652, 1 Park & Lee 2006,
Studying the mass assembly and luminosity gap in fossil groups of galaxies from the Millennium Simulation Ali Dariush, University of Birmingham Studying.
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
Large Scale Structure of the Universe at high redshifts Large Scale Structure of the Universe at high redshifts M.Demianski, A.Doroshkevich and S.Gottloeber.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
High Redshift Galaxies (Ever Increasing Numbers).
Modeling the 3-point correlation function Felipe Marin Department of Astronomy & Astrophysics University of Chicago arXiv: Felipe Marin Department.
Cosmological constraints from models of galaxy clustering Abstract Given a dark matter distribution, the halo occupation distribution (HOD) provides a.
박창범 ( 고등과학원 ) & 김주한 ( 경희대학교 ), J. R. Gott (Princeton, USA), J. Dubinski (CITA, Canada) 한국계산과학공학회 창립학술대회 Cosmological N-Body Simulation of Cosmic.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
 CDM Subhalos P.Nurmi, P.Heinämäki, E. Saar, M. Einasto, J. Holopainen, V.J. Martinez, J. Einasto Subhalos in LCDM cosmological simulations: Masses and.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
Impact of Early Dark Energy on non-linear structure formation Margherita Grossi MPA, Garching Volker Springel Advisor : Volker Springel 3rd Biennial Leopoldina.
The Halo Model Structure formation: cosmic capitalism Halos: abundances, clustering and evolution Galaxies: a nonlinear biased view of dark matters Marked.
, Tuorla Observatory 1 Galaxy groups in ΛCDM simulations and SDSS DR5 P. Nurmi, P. Heinämäki, S. Niemi, J. Holopainen Tuorla Observatory E. Saar,
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
Cosmic Structures: Challenges for Astro-Statistics Ofer Lahav Department of Physics and Astronomy University College London * Data compression – e.g. P(k)
The 21cm signature of the First Stars Xuelei Chen 陳學雷 National Astronomical Observatory of China Xuelei Chen 陳學雷 National Astronomical Observatory of China.
Observational Constraints on Galaxy Clusters and DM Dynamics Doron Lemze Tel-Aviv University / Johns Hopkins University Collaborators : Tom Broadhurst,
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
Measuring dark energy from galaxy surveys Carlton Baugh Durham University London 21 st March 2012.
Evolution of the Halo Mass Function Zarija Lukić (UIUC) Katrin Heitmann (LANL) Salman Habib (LANL) Sergei Bashinsky (LANL) Paul Ricker (UIUC) astro-ph/
Sean Passmoor Supervised by Dr C. Cress Simulating the Radio Sky.
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
Making a virtual Universe Adrian Jenkins - ICC, Durham University.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo,
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
Simulations by Ben Moore (Univ. of Zurich)
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
Zheng Dept. of Astronomy, Ohio State University David Weinberg (Advisor, Ohio State) Andreas Berlind (NYU) Josh Frieman (Chicago) Jeremy Tinker (Ohio State)
Zheng I N S T I T U T E for ADVANCED STUDY Cosmology and Structure Formation KIAS Sep. 21, 2006.
Population of Dark Matter Subhaloes Department of Astronomy - UniPD INAF - Observatory of Padova Carlo Giocoli prof. Giuseppe Tormen May Blois.
March 27, 2008 Milan Raicevic ICC, Durham University Studying the role of inhomogeneous reionization in galaxy formation with GALFORM and SimpleX Collaborators:
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
联 合 天 体 物 理 中 心 Joint Center for Astrophysics The half-light radius distribution of LBGs and their stellar mass function Chenggang Shu Joint Center for.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Carlos Hernández-Monteagudo CE F CA 1 CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CE F CA) J-PAS 10th Collaboration Meeting March 11th 2015 Cosmology.
Interpreting the relationship between galaxy luminosity, color, and environment. Andreas Berlind (NYU, CCPP) SPH predictions: Michael Blanton (NYU) David.
G.W. Pratt, Ringberg, 26/10/2005 Structure and scaling of nearby clusters of galaxies – in X-rays Gabriel W. Pratt, MPE Garching, Germany.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Cheng Zhao Supervisor: Charling Tao
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
A self consistent model of galaxy formation across cosmic time Bruno Henriques Simon White, Peter Thomas Raul Angulo, Qi Guo, Gerard Lemson, Volker Springel.
Reionization of the Universe MinGyu Kim
Outline Part II. Structure Formation: Dark Matter
Clustering and environments of dark matter halos
Martin Haehnelt, Matteo Viel, Volker Springel
An Analytic Approach to Assess Galaxy Projection Along A Line of Sight
Outline Part II. Structure Formation: Dark Matter
Modeling the dependence of galaxy clustering on stellar mass and SEDs
Presentation transcript:

The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv: Katrin Heitmann (LANL) Salman Habib (LANL) Zarija Lukic (Illinois) Richard Bower (ICC-Durham) Carlos Frenk (ICC-Durham) Adrian Jenkins (ICC-Durham) Tom Theuns (ICC-Durham) (see astro-ph/ ) soccorro, 2008

Overview High redshift dark matter simulations – capture entire luminous mass range mini-halos “1 st stars” (T vir > ~2000K) “galaxy halos” (T vir > 10 4 K) We found how many halos (universal mass function)……… now need to know where are the halos? Clustering background and its importance Halo clustering results Conclusions

The dark ages……. L. Hernquist ionized, z > 1100 (CMB) reionized, z 6 neutral --> 21cm Spitzer Subaru LOFAR,SKA...

star formation in metal free gas T vir >10 4 K: Atomic cooling Efficient T vir >~ 2000K: H 2 line cooling Inefficient Mhalo ≥ ~10 8 Msun Mhalo ≥ ~ Msun H+e -  H - +hυ H - +H  H 2 +e- mini-halo ~ M sun ? cools lots of stars? 1 st galaxies?

high z (reionizing era) halo clustering -JWST (or sooner) to measure z >~ 6 clustering --galaxies form within halos -galaxy clustering at high redshift --sensitive to cosmology (e.g. σ 8, D.M. type) --sensitive to galaxy formation physics (e.g. SNe)  probe cosmology and galaxy form. physics

Simulation Techniques Cosmological parameters: (  =0.25,  =0.75,  8 =0.9, H 0 =73, n s =1)  8 : amplitude of power spectrum, (rms mass fluctuation of 8 Mpc/h spheres) + Hi-z SNe, 2df, etc. NASA/WMAP High-z (linear) gaussian random realization Evolve particles (gravity) L-GADGET2 (PM-tree code V. Springel)

z=10 12 Mpc/h

z=10

What is a halo? friends-of-friends ~iso-density link length ~ 0.2 lmean -->~“universal” halo mass function, f( σ mass (m)) Lukic et al z=0

Is f(σ) redshift invariant? “almost” f sim /f(σ) f sim /f(σ,n eff ) (z dependent) n eff ≡slope of P(k) at scale of halo P(k) α k neff Reed et al. 2007

highly clustered, “biased” weakly clustered bias(r)=(ξ halos (r)/ξ mass (r)) 1/2 ξ (r) = N pair /N pair_random -1

halo bias auto-correlation function of “galaxy” halos mass b =(ξ halos /ξ mass ) 1/2 halos mass

Scale-dependence of halo bias z=10 Sheth, Mo & Tormen large scale prediction (b SMT ) Small scales strongly biased “non-universal” vs lo-z sims M vir > our fit lo-z sim fit by Diaferio et al. (2003)

Scale-dependence of halo bias z=10 Sheth, Mo & Tormen large scale prediction (b SMT ) Small scales strongly biased “non-universal” vs lo-z sims b(r) =f( σ mass (r)) M vir > our fit lo-z sim fit by Diaferio et al. (2003)

z=10 12 Mpc/h

z=3

z=1

z=0

z=10

z=3

z=1

z=0

z=0 galaxiesz=10 galaxies Why is the scale dependence of halo bias so steep during the dark ages?

Universality of large-scale bias “universal” mass variable,, MW=predictions of Mo & White (1996) SMT=Sheth, Mo & Tormen (2001) Millennium run data from Gao et al. (2005).

mass halos Finite-box effects on velocities. Pairwise velocity dispersion along the line of separation

Conclusions Clustering measured in dark matter simulations  halos of 1 st “galaxies” and 1 st stars Spatial clustering  steep scale dependence, “non-universal”  Large-scale “universal” & consistent with analytic predictions Impending Observational uses:  cosmological probe on small scales, e.g. σ 8, DM type  physics of galaxy formation, local feedback effects, how galaxies populate halos